Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers

Abstract

Interferometers probe the wave-nature and exchange statistics of indistinguishable particles—for example, electrons in the chiral one-dimensional edge channels of the quantum Hall effect (QHE). Quantum point contacts can split and recombine these channels, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can unveil the exchange statistics of anyonic quasi-particles in the fractional quantum Hall effect (FQHE). Here, we present a fabrication technique for QHIs in van der Waals (vdW) materials and realize a tunable, graphene-based Fabry–Pérot (FP) QHI. The graphite-encapsulated architecture allows observation of FQHE at a magnetic field of 3T and precise partitioning of integer and fractional edge modes. We measure pure Aharonov–Bohm interference in the integer QHE, a major technical challenge in small FP interferometers, and find that edge modes exhibit high-visibility interference due to large velocities. Our results establish vdW heterostructures as a versatile alternative to GaAs-based interferometers for future experiments targeting anyonic quasi-particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gate-defined FP interferometer in graphene.
Fig. 2: Tunable QPCs and oscillations controlled by plunger gate.
Fig. 3: AB-dominated FP interference.
Fig. 4: Gate- versus etch-defined interferometer.
Fig. 5: Edge mode velocity and comparison of oscillations in different filling factors.
Fig. 6: AB interference of an integer edge when the bulk is in a fractional filling.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at the online depository Zenodo: https://doi.org/10.5281/zenodo.4430703. Source data are provided with this paper.

References

  1. Pérot, A. & Fabry, C. On the application of interference phenomena to the solution of various problems of spectroscopy and metrology. Astrophys. J. 9, 87–155 (1899).

    Article  Google Scholar 

  2. Bocquillon, E. et al. Electron quantum optics in ballistic chiral conductors. Ann. Phys. (Berl.) 526, 1–30 (2014).

    Article  CAS  Google Scholar 

  3. van Wees, B. J. et al. Observation of zero-dimensional states in a one-dimensional electron interferometer. Phys. Rev. Lett. 62, 2523–2526 (1989).

    Article  Google Scholar 

  4. Willett, R. L., Pfeiffer, L. N. & West, K. W. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl Acad. Sci. USA 106, 8853–8858 (2009).

    Article  CAS  Google Scholar 

  5. McClure, D. T., Chang, W., Marcus, C. M., Pfeiffer, L. N. & West, K. W. Fabry–Perot interferometry with fractional charges. Phys. Rev. Lett. 108, 256804 (2012).

    Article  CAS  Google Scholar 

  6. Willett, R. L., Nayak, C., Shtengel, K., Pfeiffer, L. N. & West, K. W. Magnetic-field-tuned Aharonov–Bohm oscillations and evidence for non-abelian anyons at v = 5/2. Phys. Rev. Lett. 111, 186401 (2013).

    Article  CAS  Google Scholar 

  7. Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article  CAS  Google Scholar 

  8. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  CAS  Google Scholar 

  9. Camino, F. E., Zhou, W. & Goldman, V. J. Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. Phys. Rev. B 72, 075342 (2005).

  10. de C. Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  Google Scholar 

  11. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  12. Zhang, Y. et al. Distinct signatures for coulomb blockade and Aharonov–Bohm interference in electronic Fabry–Perot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article  Google Scholar 

  13. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry–Pérot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article  Google Scholar 

  14. Sivan, I. et al. Observation of interaction-induced modulations of a quantum Hall liquid’s area. Nat. Commun. 7, 12184 (2016).

    Article  CAS  Google Scholar 

  15. Röösli, M. P. et al. Observation of quantum Hall interferometer phase jumps due to a change in the number of bulk quasiparticles. Phys. Rev. B 101, 125302 (2020).

    Article  Google Scholar 

  16. Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article  CAS  Google Scholar 

  17. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  CAS  Google Scholar 

  18. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article  CAS  Google Scholar 

  19. Zibrov, A. A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    Article  CAS  Google Scholar 

  20. Kim, Y. et al. Even denominator fractional quantum Hall states in higher Landau levels of graphene. Nat. Phys. 15, 154–158 (2019).

    Article  CAS  Google Scholar 

  21. Li, J. et al. A valley valve and electron beam splitter. Science 362, 1149–1152 (2018).

    Article  CAS  Google Scholar 

  22. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  23. Rickhaus, P. et al. Ballistic interferences in suspended graphene. Nat. Commun. 4, 2342 (2013).

    Article  Google Scholar 

  24. Ahmad, N. F. et al. Fabry–Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts. Sci. Rep. 9, 3031 (2019).

    Article  Google Scholar 

  25. Veyrat, L. et al. Low-magnetic-field regime of a gate-defined constriction in high-mobility graphene. Nano Lett. 19, 635–642 (2019).

    Article  Google Scholar 

  26. Zhang, G.-Q. et al. Coulomb-dominated oscillations in a graphene quantum Hall Fabry–Pérot interferometer. Chin. Phys. B 28, 127203 (2019).

    Article  CAS  Google Scholar 

  27. Morikawa, S. et al. Edge-channel interferometer at the graphene quantum Hall pn junction. Appl. Phys. Lett. 106, 183101 (2015).

    Article  Google Scholar 

  28. Wei, D. S. et al. Mach–Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene. Sci. Adv. 3, e1700600 (2017).

  29. Marguerite, A. et al. Imaging work and dissipation in the quantum Hall state in graphene. Nature 575, 628–633 (2019).

    Article  CAS  Google Scholar 

  30. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  CAS  Google Scholar 

  31. Nakaharai, S., Williams, J. R. & Marcus, C. M. Gate-defined graphene quantum point contact in the quantum Hall regime. Phys. Rev. Lett. 107, 036602 (2011).

    Article  CAS  Google Scholar 

  32. Zimmermann, K. et al. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices. Nat. Commun. 8, 14983 (2017).

    Article  CAS  Google Scholar 

  33. Baer, S. et al. Interplay of fractional quantum Hall states and localization in quantum point contacts. Phys. Rev. B 89, 085424 (2014).

    Article  Google Scholar 

  34. Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article  CAS  Google Scholar 

  35. McClure, D. T. et al. Edge-state velocity and coherence in a quantum Hall Fabry–Pérot interferometer. Phys. Rev. Lett. 103, 206806 (2009).

    Article  CAS  Google Scholar 

  36. Déprez, C. et al. A tunable Fabry–Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00847-x (2020).

  37. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  CAS  Google Scholar 

  38. Li, J. I. A. et al. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    Article  CAS  Google Scholar 

  39. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  CAS  Google Scholar 

  40. Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article  CAS  Google Scholar 

  41. Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Article  CAS  Google Scholar 

  42. Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 16, 862–867 (2020).

    Article  CAS  Google Scholar 

  43. Huang, X.-L. & Nazarov, Y. V. Interaction-induced supercurrent in quantum Hall setups. Phys. Rev. B 100, 155411 (2019).

    Article  CAS  Google Scholar 

  44. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article  Google Scholar 

  45. Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).

    Google Scholar 

  46. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  CAS  Google Scholar 

  47. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  48. Ronen, Y. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. zenodo https://doi.org/10.5281/zenodo.4430703 (2021).

Download references

Acknowledgements

We thank B. I. Halperin, M. Heiblum, E. Zeldov, H. Shapourian and D. S. Wei for helpful discussions. P.K., Y.R., T.W. and L.E.A. acknowledge support from DOE (no. DE-SC0012260) in regard to measurement, characterization and analysis. P.K., D.H.N., and Y.J.S. acknowledge support from DOE (no. DE-SC0019300) for sample preparation and characterization. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, (grant no. JPMXP0112101001), JSPS KAKENHI (grant no. JP20H00354) and CREST (no. JPMJCR15F3, JST). S.Y.L. and Y.H.L. acknowledge support from the Institute for Basic Science (no. IBS-R011-D1). T.W. and A.T.P. were supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program. Nanofabrication was performed at the Center for Nanoscale Systems at Harvard, supported in part by an NSF NNIN award (no. ECS-00335765). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

Y.R., T.W. and P.K. conceived the idea and designed the project. P.K. supervised the project. Y.R., T.W. and D.H.N. fabricated the devices. L.E.A., Y.J.S., B.J., S.Y.L., Y.H.L. and A.Y. helped and consulted at different stages of the fabrication process and analysis. K.W. and T.T. provided the hBN crystals. Y.R., T.W. and A.T.P. performed the measurements. Y.R., T.W., A.Y. and P.K. wrote the paper with input from all authors.

Corresponding author

Correspondence to Philip Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Gwendal Fève and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6 and figures.

Source data

Source Data Fig. 2

Contains bare data for images.

Source Data Fig. 3

Contains bare data for images.

Source Data Fig. 4

Contains bare data for images.

Source Data Fig. 5

Contains bare data for images.

Source Data Fig. 6

Contains bare data for images.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronen, Y., Werkmeister, T., Haie Najafabadi, D. et al. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021). https://doi.org/10.1038/s41565-021-00861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00861-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing