Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 8, 2016

Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation

  • Da-Wei Zuo , Hui-Xia Mo EMAIL logo and Hui-Ping Zhou

Abstract

Korteweg–de Vries (KdV)-type equations can describe the nonlinear phenomena in shallow water waves, stratified internal waves, and ion-acoustic waves in plasmas. In this article, the two-dimensional generalization of the Sawada–Kotera equation, one of the KdV-type equations, is discussed by virtue of the Bell polynomials and Hirota method. The results show that there exist multi-soliton solutions for such an equation. Relations between the direction of the soliton propagation and coordinate axes are shown. Elastic interaction with the multi-soliton solutions are analysed.

PACS Numbers:: 05.45.Yv; 52.35.Mw; 52.35.Sb

Corresponding author: Hui-Xia Mo, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China, E-mail:

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant No. 11471050 and by the Foundation of Hebei Education Department of China under Grant Nos. QN2015051, QN2014041, and Z2015143.

References

[1] Y. T. Gao and B. Tian, Eur. Phys. Lett. 77, 15001 (2007).10.1209/0295-5075/77/15001Search in Google Scholar

[2] X. Y. Gao, Europhys. Lett. 110, 15002 (2015).10.1209/0295-5075/110/15002Search in Google Scholar

[3] K. Sawada and T. Kotera, Prog. Theor. Phys. 51, 1355 (1974).10.1143/PTP.51.1355Search in Google Scholar

[4] A. Salas, Appl. Math. Comput. 196, 812 (2008).10.1016/j.amc.2007.07.013Search in Google Scholar

[5] C. A. Gómez and A. H. Salas, Appl. Math. Comput. 217, 1408 (2010).10.1016/j.amc.2009.05.046Search in Google Scholar

[6] C. G. Liu and Z. D. Dai, Appl. Math. Comput. 206, 272 (2008).10.1016/j.amc.2008.08.028Search in Google Scholar

[7] A. M. Wazwaz and A. Ebaid, Rom. J. Phys. 59, 454 (2014).Search in Google Scholar

[8] M. Matinfar, M. Aminzadeh, and M. Nemati, Indian J. Pure Appl. Math. 45, 111 (2014).10.1007/s13226-014-0054-ySearch in Google Scholar

[9] X. Lü, W. X. Ma, J. Yu, and C. M. Khalique, Commun. Nonlinear Sci. Numer. Simulat. 31, 40 (2016).10.1016/j.cnsns.2015.07.007Search in Google Scholar

[10] X. Lü and F. H. Lin, Commun. Nonlinear Sci. Numer. Simulat. 32, 241 (2016).Search in Google Scholar

[11] X. Lü, F. H. Lin, and F. H. Qi, Appl. Math. Model. 39, 3221 (2015).10.1016/j.apm.2014.10.046Search in Google Scholar

[12] X. Lü and M. S. Peng, Chaos 23, 013122 (2013).10.1063/1.4790827Search in Google Scholar

[13] X. Lü, W. X. Ma, and C. M. Khalique, Appl. Math. Lett. 50, 37 (2015).10.1016/j.aml.2015.06.003Search in Google Scholar

[14] X. Lü, Chaos 23, 033137 (2013).10.1063/1.4821132Search in Google Scholar

[15] Y. T. Gao and B. Tian, Phys. Plasmas 13, 120703 (2006).10.1063/1.2402916Search in Google Scholar

[16] B. G. Konpelchenko and V. G. Dubrovsky, Phys. Lett. A 102, 15 (1984).10.1016/0375-9601(84)90442-0Search in Google Scholar

[17] A. Maccari, Phys. Lett. A 265, 187 (2000).10.1016/S0375-9601(99)00842-7Search in Google Scholar

[18] X. Lü, B. Tian, K. Sun, and P. Wang, J. Math. Phys. 51, 113506 (2010).10.1063/1.3504168Search in Google Scholar

[19] Z. L. Zhao, Y. F. Zhang and T. C. Xia, Abstr. Appl. Anal. 2014, 534016 (2014).Search in Google Scholar

[20] X. Lü, T. Geng, C. Zhang, H. W. Zhu, X. H. Meng, et al., Int. J. Mod. Phys. B 23, 5003 (2009).10.1142/S0217979209053382Search in Google Scholar

[21] A. M. Wazwaz, Math. Meth. Appl. Sci. 34, 1580 (2011).10.1002/mma.1460Search in Google Scholar

[22] H. X. Jia, J. Y. Ma, Y. J. Liu, and X. F. Liu, Indian J. Phys. 89, 281 (2015).10.1007/s12648-014-0544-0Search in Google Scholar

[23] H.-X. Jia, Y.-J. Liu, and Y.-N. Wang, Z. Naturforsch. A. 71, 27 (2016).10.1515/zna-2015-0306Search in Google Scholar

[24] E. T. Bell, Ann. Math. 35, 258 (1934).10.2307/1968431Search in Google Scholar

[25] C. Gilson, F. Lambert, J. J. Nimmo, and R Willox, Proc. Roy. Soc. Lond. Ser. A 452, 223 (1996).10.1098/rspa.1996.0013Search in Google Scholar

[26] F. Lambert and J. Springael, Chaos Soliton Frac. 12, 2821 (2001).10.1016/S0960-0779(01)00096-0Search in Google Scholar

[27] F. Lambert and J. Springael, Acta Appl. Math. 102, 147 (2008).10.1007/s10440-008-9209-3Search in Google Scholar

[28] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511543043Search in Google Scholar

[29] F. Lambert, I. Loris, J. Springael, and R. Willox, J. Phys. A 27, 5325 (1994).10.1088/0305-4470/27/15/028Search in Google Scholar

[30] D. W. Zuo, Y. T. Gao, X. Yu, Y. H. Sun, and L. Xue, Z. Naturforsch. A. 70, 309 (2015).10.1515/zna-2014-0340Search in Google Scholar

[31] Q. Wang, D. Li, and M. Z. Liu, Chaos Soliton. Fract. 42, 3087 (2009).10.1016/j.chaos.2009.04.008Search in Google Scholar

Received: 2015-10-22
Accepted: 2016-1-12
Published Online: 2016-2-8
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 26.10.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2015-0445/html
Scroll to top button