skip to main content
research-article

Millisecond-scale molecular dynamics simulations on Anton

Published: 14 November 2009 Publication History

Abstract

Anton is a recently completed special-purpose supercomputer designed for molecular dynamics (MD) simulations of biomolecular systems. The machine's specialized hardware dramatically increases the speed of MD calculations, making possible for the first time the simulation of biological molecules at an atomic level of detail for periods on the order of a millisecond---about two orders of magnitude beyond the previous state of the art. Anton is now running simulations on a timescale at which many critically important, but poorly understood phenomena are known to occur, allowing the observation of aspects of protein dynamics that were previously inaccessible to both computational and experimental study. Here, we report Anton's performance when executing actual MD simulations whose accuracy has been validated against both existing MD software and experimental observations. We also discuss the manner in which novel algorithms have been coordinated with Anton's co-designed, application-specific hardware to achieve these results.

References

[1]
A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kalé. 2008. Overcoming scaling challenges in biomolecular simulations across multiple platforms. In Proc. IEEE Int. Parallel and Distributed Processing Symp. (Miami, FL, 2008).
[2]
K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossváry, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw. 2006. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006).
[3]
K. J. Bowers, R. O. Dror, and D. E. Shaw. 2007. Zonal methods for the parallel execution of range-limited N-body problems. J. Comput. Phys. 221 (1), 303--329.
[4]
E. Chow, C. A. Rendleman, K. J. Bowers, R. O. Dror, D. H. Hughes, J. Gullingsrud, F. D. Sacerdoti, and D. E. Shaw. 2008. Desmond performance on a cluster of multicore processors. D. E. Shaw Research Technical Report DESRES/TR-2008-01. http://deshawresearch.com.
[5]
R. O. Dror, D. H. Arlow, D. W. Borhani, M. Ø. Jensen, S. Piana, and D. E. Shaw. 2009. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. USA 106, 4689--4694.
[6]
D. L. Ensign, P. M. Kasson, and V. S. Pande. 2007. Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol. 374, 806--16.
[7]
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103 (19), 8577--8593.
[8]
R. D. Fine, G. Dimmler, and C. Levinthal. 1991. A special purpose, hardwired computer for molecular simulation. Proteins: Struct., Funct., Genet. 11 (4), 242--253.
[9]
B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. E. Giampapa, M. C. Pitman, J. W. Pitera, W. C. Swope, and R. S. Germain. 2006. Blue Matter: approaching the limits of concurrency for classical molecular dynamics. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006).
[10]
P. L. Freddolino, F. Liu, M. H. Gruebele, and K. Schulten. 2008. Ten-microsecond MD simulation of a fast-folding WW domain. Biophys. J. 94 (10), L75--L77.
[11]
R. S. Germain, B. Fitch, A. Rayshubskiy, M. Eleftheriou, M. C. Pitman, F. Suits, M. Giampapa, and T. J. C. Ward. 2005. Blue Matter on Blue Gene/L: massively parallel computation for biomolecular simulation. In Proc. 3rd IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and System Synthesis (New York, NY, 2005).
[12]
A. Grossfield, M. C. Pitman, S. E. Feller, O. Soubias, and K. Gawrisch. 2008. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J. Mol. Biol. 381, 478--486.
[13]
J. B. Hall and D. Fushman. 2006. Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters. J. Am. Chem. Soc. 128 (24), 7855--7870.
[14]
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4 (2), 435--447.
[15]
R. W. Hockney and J. W. Eastwood. 1988. Computer Simulation Using Particles. Adam Hilger, Bristol, England, 1988.
[16]
H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon. 2004. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120 (20), 9665--9678.
[17]
V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. 2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Funct., Bioinf. 65, 712--725.
[18]
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118 (45), 11225--11236.
[19]
L. V. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. 1999. NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151 (1), 283--312.
[20]
F. Khalili-Araghi, J. Gumbart, P.-C. Wen, M. Sotomayor, E. Tajkhorshid, and K. Shulten. 2009. Molecular dynamics simulations of membrane channels and transporters. Curr. Opin. Struct. Biol. 19 (2), 128--137.
[21]
J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. 2009. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19 (2), 120--127.
[22]
J. S. Kuskin, C. Young, J. P. Grossman, B. Batson, M. Deneroff, R. O. Dror, and D. E. Shaw. 2008. Incorporating flexibility in Anton, a specialized machine for molecular dynamics simulation. In Proc. 14th Int. Symp. on High-Performance Computer Architecture (Salt Lake City, UT, 2008).
[23]
R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, C. Young, J. P. Grossman, Y. Shan, J. L. Klepeis, and D. E. Shaw. 2008. High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation. In Proc. 14th Int. Symp. on High-Performance Computer Architecture (Salt Lake City, UT, 2008).
[24]
P. Maragakis, K. Lindorff-Larsen, M. Eastwood, R. O. Dror, J. L. Klepeis, I. T. Arkin, M. Ø. Jensen, H. Xu, N. Trbovic, R. A. Friesner, A. G. Palmer III, and D. E. Shaw. 2008. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B 112, 6155--6158.
[25]
K. Martinez-Mayorga, M. C. Pitman, A. Grossfield, S. E. Feller, and M. F. Brown. 2006. Retinal counterion switch mechanism in vision evaluated by molecular simulations. J. Am. Chem. Soc. 128, 16502--16503.
[26]
J. A. McCammon, B. R. Gelin, and M. Karplus. 1977. Dynamics of folded proteins. Nature 267, 585--590.
[27]
T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futasugi, R. Yanai, R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei. 2006. A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006).
[28]
S. Piana-Agostinetti, K. Lindorff-Larsen, P. Maragakis, M. P. Eastwood, R. O. Dror, and D. E. Shaw. 2009. Improving molecular mechanics force fields by comparison of microsecond simulations with NMR experiments. Biophys. J. 96 (3), 406a.
[29]
S. J. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner. 1996. Transient dynamics simulations: parallel algorithms for contact detection and smoothed particle hydrodynamics. In Proc. ACM/IEEE Conf. on Supercomputing (Pittsburgh, PA, 1996).
[30]
B. Roux. 2007. A proton-controlled check valve for sodium ion transport. Nature Chem. Bio. 3, 609--610.
[31]
Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw. 2005. Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122, 054101.
[32]
D. E. Shaw. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. 2005. J. Comput. Chem. 26 (13), 1318--1328.
[33]
D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. C. Wang. 2007. Anton: a special-purpose machine for molecular dynamics simulation. In Proc. 34th Int. Symp. on Computer Architecture (San Diego, CA, 2007). ACM Press, New York, NY, 1--12.
[34]
R. D. Skeel. 1999. Symplectic integration with floating-point arithmetic and other approximations. In Proc. NSF/CBMS Regional Conf. on Numerical Analysis of Hamiltonian Differential Equations (Golden, CO, 1999) 29, 3--18.
[35]
A. Suenaga, T. Narumi, N. Futatsugi, R. Yanai, Y. Ohno, N. Okimoto, and M. Taiji. 2007. Folding dynamics of 10-residue b-hairpin peptide chignolin. Chem. Asian J. 2, 591--598.
[36]
C. Young, J. A. Bank, R. O. Dror, J. P. Grossman, J. K. Salmon, and D. E. Shaw. 2009. A 32x32x32, spatially distributed 3D FFT in four microseconds on Anton. In Proc. ACM/IEEE Conf. on Supercomputing (Portland, OR, 2009).
[37]
R. Zhou, E. Harder, H. Xu, and B. J. Berne. 2001. Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J. Chem. Phys. 115 (5), 2348--2358.

Cited By

View all
  • (2024)Exploring DNA Damage and Repair Mechanisms: A Review with Computational InsightsBioTech10.3390/biotech1301000313:1(3)Online publication date: 16-Jan-2024
  • (2024)Parallel Algorithms for Intersection ComputationProceedings of the Platform for Advanced Scientific Computing Conference10.1145/3659914.3659929(1-11)Online publication date: 3-Jun-2024
  • (2024)Unraveling dynamic protein structures by two-dimensional infrared spectra with a pretrained machine learning modelProceedings of the National Academy of Sciences10.1073/pnas.2409257121121:27Online publication date: 25-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis
November 2009
778 pages
ISBN:9781605587448
DOI:10.1145/1654059
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 November 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SC '09
Sponsor:

Acceptance Rates

SC '09 Paper Acceptance Rate 59 of 261 submissions, 23%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)214
  • Downloads (Last 6 weeks)31
Reflects downloads up to 23 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Exploring DNA Damage and Repair Mechanisms: A Review with Computational InsightsBioTech10.3390/biotech1301000313:1(3)Online publication date: 16-Jan-2024
  • (2024)Parallel Algorithms for Intersection ComputationProceedings of the Platform for Advanced Scientific Computing Conference10.1145/3659914.3659929(1-11)Online publication date: 3-Jun-2024
  • (2024)Unraveling dynamic protein structures by two-dimensional infrared spectra with a pretrained machine learning modelProceedings of the National Academy of Sciences10.1073/pnas.2409257121121:27Online publication date: 25-Jun-2024
  • (2024)Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force FieldJournal of Chemical Theory and Computation10.1021/acs.jctc.4c0074320:17(7546-7559)Online publication date: 26-Aug-2024
  • (2024)Mesoscale material modeling with memoryless isotropic point particlesJournal of Computational Science10.1016/j.jocs.2023.10219875(102198)Online publication date: Jan-2024
  • (2024)Visualizing chemical functionality and structural insights into SARS-CoV-2 proteinsStem Cells10.1016/B978-0-323-95545-4.00007-4(257-275)Online publication date: 2024
  • (2023)Enhance the Strong Scaling of LAMMPS on FugakuProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607064(1-13)Online publication date: 12-Nov-2023
  • (2023)Modeling Changes in Molecular Dynamics Time Series as Wasserstein Barycentric Interpolations2023 International Conference on Sampling Theory and Applications (SampTA)10.1109/SampTA59647.2023.10301374(1-7)Online publication date: 10-Jul-2023
  • (2023)Microsecond Simulation in a Special-Purpose Molecular Dynamics Computer Cluster2023 11th International Conference on Bioinformatics and Computational Biology (ICBCB)10.1109/ICBCB57893.2023.10246549(151-157)Online publication date: 21-Apr-2023
  • (2023) Structural and functional insights into a novel homozygous missense pathogenic variant in CUL7 identified in consanguineous Pakistani family Journal of Biomolecular Structure and Dynamics10.1080/07391102.2023.222488942:10(5092-5103)Online publication date: 22-Jun-2023
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media