Skip to main content
Log in

Survey on rain removal from videos or a single image

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Rain can cause performance degradation of outdoor computer vision tasks. Thus, the exploration of rain removal from videos or a single image has drawn considerable attention in the field of image processing. Recently, various deraining methodologies have been proposed. However, no comprehensive survey work has yet been conducted to summarize existing deraining algorithms and quantitatively compare their generalization ability, and especially, no off-the-shelf toolkit exists for accumulating and categorizing recent representative methods for easy performance reproduction and deraining capability evaluation. In this regard, herein, we present a comprehensive overview of existing video and single image deraining methods as well as reproduce and evaluate current state-of-the-art deraining methods. In particular, these approaches are mainly classified into model- and deep-learning-based methods, and more elaborate branches of each method are presented. Inherent abilities, especially generalization performance, of the state-of-the-art methods have been both quantitatively and visually analyzed through thorough experiments conducted on synthetic and real benchmark datasets. Moreover, to facilitate the reproduction of existing deraining methods for general users, we present a comprehensive repository with detailed classification, including direct links to 85 deraining papers, 24 relevant project pages, source codes of 12 and 25 algorithms for video and single image deraining, respectively, 5 and 10 real and synthesized datasets, respectively, and 7 frequently used image quality evaluation metrics, along with the corresponding computation codes. Research limitations worthy of further exploration have also been discussed for future research along this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang W, Tan R T, Feng J, et al. Deep joint rain detection and removal from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1357–1366

  2. Yang W, Tan R T, Feng J, et al. Joint rain detection and removal from a single image with contextualized deep networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42: 1377–1393

    Article  Google Scholar 

  3. Li S, Araujo I B, Ren W, et al. Single image deraining: a comprehensive benchmark analysis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 3838–3847

  4. Bahnsen C H, Moeslund T B. Rain removal in traffic surveillance: does it matter?. IEEE Trans Intell Transp Syst, 2019, 20: 2802–2819

    Article  Google Scholar 

  5. Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell, 2003, 25: 564–577

    Article  Google Scholar 

  6. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell, 1998, 11: 1254–1259

    Article  Google Scholar 

  7. Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. 2360–2367

  8. Shehata M S, Cai J, Badawy W M, et al. Video-based automatic incident detection for smart roads: the outdoor environmental challenges regarding false alarms. IEEE Trans Intell Transp Syst, 2008, 9: 349–360

    Article  Google Scholar 

  9. Pang Y W, Xie J, Li X L. Visual haze removal by a unified generative adversarial network. IEEE Trans Circ Syst Video Technol, 2019, 29: 3211–3221

    Article  Google Scholar 

  10. Sun H Q, Pang Y W. GlanceNets-efficient convolutional neural networks with adaptive hard example mining. Sci China Inf Sci, 2018, 61: 109101

    Article  Google Scholar 

  11. Zhang Z J, Pang Y W. CGNet: cross-guidance network for semantic segmentation. Sci China Inf Sci, 2020, 63: 120104

    Article  Google Scholar 

  12. Ma S, Pang Y W, Pan J, et al. Preserving details in semantics-aware context for scene parsing. Sci China Inf Sci, 2020, 63: 120106

    Article  Google Scholar 

  13. Garg K, Nayar S K. Vision and rain. Int J Comput Vis, 2007, 75: 3–27

    Article  Google Scholar 

  14. Yu W J, Huang Z, Zhang W, et al. Gradual network for single image de-raining. In: Proceedings of the 27th ACM International Conference on Multimedia, 2019. 1795–1804

  15. Zhang X P, Li H, Qi Y Y, et al. Rain removal in video by combining temporal and chromatic properties. In: Proceedings of IEEE International Conference on Multimedia and Expo, 2006. 461–464

  16. Luo Y, Xu Y, Ji H. Removing rain from a single image via discriminative sparse coding. In: Proceedings of IEEE International Conference on Computer Vision, 2015. 3397–3405

  17. Li Y, Tan R T, Guo X, et al. Rain streak removal using layer priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2736–2744

  18. Gu S, Meng D, Zuo W, et al. Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of IEEE International Conference on Computer Vision, 2017. 1708–1716

  19. Yasarla R, Patel V M. Confidence measure guided single image de-raining. IEEE Trans Image Process, 2020, 29: 4544–4555

    Article  MATH  Google Scholar 

  20. Wang X F, Chen J, Jiang K, et al. Single image de-raining via clique recursive feedback mechanism. Neurocomputing, 2020, 417: 142–154

    Article  Google Scholar 

  21. Fu X Y, Huang J B, Ding X H, et al. Clearing the skies: a deep network architecture for single-image rain removal. IEEE Trans Image Process, 2017, 26: 2944–2956

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang H, Patel V M. Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 695–704

  23. Fu X Y, Huang J B, Zeng D L, et al. Removing rain from single images via a deep detail network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 3855–3863

  24. Li X, Wu J L, Lin Z C, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Proceedings of European Conference on Computer Vision (ECCV), 2018. 254–269

  25. Wei W, Yi L X, Xie Q, et al. Should we encode rain streaks in video as deterministic or stochastic? In: Proceedings of IEEE International Conference on Computer Vision, 2017. 2516–2525

  26. Li M H, Xie Q, Zhao Q, et al. Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 6644–6653

  27. Liu J Y, Yang W H, Yang S, et al. Erase or fill? Deep joint recurrent rain removal and reconstruction in videos. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 3233–3242

  28. Liu J Y, Yang W H, Yang S, et al. D3R-Net: dynamic routing residue recurrent network for video rain removal. IEEE Trans Image Process, 2019, 28: 699–712

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang K, Wang Z Y, Yi P, et al. Decomposition makes better rain removal: an improved attention-guided deraining network. IEEE Trans Circ Syst Video Technol, 2020. doi: https://doi.org/10.1109/TCSVT.2020.3044887

  30. Pang B, Zhai D M, Jiang J J, et al. Single image deraining via scale-space invariant attention neural network. In: Proceedings of the 28th ACM International Conference on Multimedia, 2020. 375–383

  31. Shao M W, Li L, Wang H, et al. Selective generative adversarial network for raindrop removal from a single image. Neurocomputing, 2021, 426: 265–273

    Article  Google Scholar 

  32. Ren D W, Zuo W M, Hu Q H, et al. Progressive image deraining networks: a better and simpler baseline. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 3937–3946

  33. Wang T Y, Yang X, Xu K, et al. Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 12270–12279

  34. Pan J S, Liu S F, Sun D Q, et al. Learning dual convolutional neural networks for low-level vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 3070–3079

  35. Wei W, Meng D Y, Zhao Q, et al. Semi-supervised transfer learning for image rain removal. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 3877–3886

  36. Yang C, Liu R S, Ma L, et al. Unrolled optimization with deep priors for intrinsic image decomposition. In: Proceedings of the 4th International Conference on Multimedia Big Data (BigMM), 2018. 1–7

  37. Yang W, Tan R T, Wang S, et al. Single image deraining: from model-based to data-driven and beyond. IEEE Trans Pattern Anal Mach Intell, 2020. doi: https://doi.org/10.1109/TPAMI.2020.2995190

  38. Beard K V, Chuang C. A new model for the equilibrium shape of raindrops. J Atmos Sci, 1987, 44: 1509–1524

    Article  Google Scholar 

  39. Tripathi A K, Mukhopadhyay S. Removal of rain from videos: a review. Signal Image Video Process, 2014, 8: 1421–1430

    Article  Google Scholar 

  40. Tripathi A K, Mukhopadhyay S. A probabilistic approach for detection and removal of rain from videos. IETE J Res, 2011, 57: 82–91

    Article  Google Scholar 

  41. Garg K, Nayar S K. When does a camera see rain? In: Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV’05), 2005. 1067–1074

  42. Foote G B, Toit P S D. Terminal velocity of raindrops aloft. J Appl Meteor, 1969, 8: 249–253

    Article  Google Scholar 

  43. Garg K, Nayar S K. Photometric Model of A Rain Drop. CMU Technical Report, 2003

  44. Liu P, Xu J, Liu J F, et al. Pixel based temporal analysis using chromatic property for removing rain from videos. Comput Inform Sci, 2009, 2: 53–60

    Google Scholar 

  45. Garg K, Nayar S K. Detection and removal of rain from videos. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004

  46. Tripathi A K, Mukhopadhyay S. Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Process, 2012, 6: 181–196

    Article  MathSciNet  Google Scholar 

  47. Park W J, Lee K H. Rain removal using kalman filter in video. In: Proceedings of International Conference on Smart Manufacturing Application, 2008. 494–497

  48. Brewer N, Liu N. Using the shape characteristics of rain to identify and remove rain from video. In: Proceedings of Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2008. 451–458

  49. Zhao X D, Liu P, Liu J F, et al. The application of histogram on rain detection in video. In: Proceedings of the 11th Joint International Conference on Information Sciences, 2008

  50. Bossu J, Hautiére N, Tarel J P. Rain or snow detection in image sequences through use of a histogram of orientation of streaks. Int J Comput Vis, 2011, 93: 348–367

    Article  Google Scholar 

  51. Barnum P, Kanade T, Narasimhan S. Spatio-temporal frequency analysis for removing rain and snow from videos. In: Proceedings of International Workshop on Photometric Analysis for Computer Vision, 2007

  52. Barnum P C, Narasimhan S, Kanade T. Analysis of rain and snow in frequency space. Int J Comput Vis, 2010, 86: 256–274

    Article  Google Scholar 

  53. Chen Y L, Hsu C T. A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In: Proceedings of IEEE International Conference on Computer Vision, 2013. 1968–1975

  54. Chen J, Chau L P. A rain pixel recovery algorithm for videos with highly dynamic scenes. IEEE Trans Image Process, 2014, 23: 1097–1104

    Article  MathSciNet  MATH  Google Scholar 

  55. Ren W H, Tian J D, Han Z, et al. Video desnowing and deraining based on matrix decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 4210–4219

  56. Kim J H, Sim J Y, Kim C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Trans Image Process, 2015, 24: 2658–2670

    Article  MathSciNet  MATH  Google Scholar 

  57. Jiang T X, Huang T Z, Zhao X L, et al. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 4057–4066

  58. Jiang T X, Huang T Z, Zhao X L, et al. FastDeRain: a novel video rain streak removal method using directional gradient priors. IEEE Trans Image Process, 2019, 28: 2089–2102

    Article  MathSciNet  Google Scholar 

  59. Chen J, Tan C H, Hou J, et al. Robust video content alignment and compensation for rain removal in a CNN framework. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 6286–6295

  60. Yang W H, Liu J Y, Feng J S. Frame-consistent recurrent video deraining with dual-level flow. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020

  61. Yang W, Tan R T, Wang S, et al. Self-learning video rain streak removal: when cyclic consistency meets temporal correspondence. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 1720–1729

  62. Xu J, Zhao W, Liu P, et al. Removing rain and snow in a single image using guided filter. In: Proceedings of IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012. 304–307

  63. He K M, Sun J, Tang X O. Guided image filtering. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1397–1409

    Article  Google Scholar 

  64. Xu J, Zhao W, Liu P, et al. An improved guidance image based method to remove rain and snow in a single image. Comput Inform Sci, 2012, 5: 49

    Google Scholar 

  65. Zheng X H, Liao Y H, Guo W, et al. Single-image-based rain and snow removal using multi-guided filter. In: Proceedings of International Conference on Neural Information Processing, 2013. 258–265

  66. Ding X H, Chen L Q, Zheng X H, et al. Single image rain and snow removal via guided L0 smoothing filter. Multimed Tools Appl, 2016, 75: 2697–2712

    Article  Google Scholar 

  67. Kim J H, Lee C, Sim J Y, et al. Single-image deraining using an adaptive nonlocal means filter. In: Proceedings of IEEE International Conference on Image Processing, 2013. 914–917

  68. Mu P, Chen J, Liu R S, et al. Learning bilevel layer priors for single image rain streaks removal. IEEE Signal Process Lett, 2019, 26: 307–311

    Article  Google Scholar 

  69. Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Trans Speech Audio Process, 1994, 2: 291–298

    Article  Google Scholar 

  70. Zhang K, Zuo W M, Gu S H, et al. Learning deep CNN denoiser prior for image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 3929–3938

  71. Fu Y H, Kang L W, Lin C W, et al. Single-frame-based rain removal via image decomposition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011. 1453–1456

  72. Chen D Y, Chen C C, Kang L W. Visual depth guided color image rain streaks removal using sparse coding. IEEE Trans Circ Syst Video Technol, 2014, 24: 1430–1455

    Article  Google Scholar 

  73. Kang L W, Lin C W, Fu Y H. Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans Image Process, 2012, 21: 1742–1755

    Article  MathSciNet  MATH  Google Scholar 

  74. Kang L W, Lin C W, Lin C T, et al. Self-learning-based rain streak removal for image/video. In: Proceedings of IEEE International Symposium on Circuits and Systems, 2012. 1871–1874

  75. Wang Y L, Liu S C, Chen C, et al. A hierarchical approach for rain or snow removing in a single color image. IEEE Trans Image Process, 2017, 26: 3936–3950

    Article  MathSciNet  MATH  Google Scholar 

  76. Sun S H, Fan S P, Wang Y C F. Exploiting image structural similarity for single image rain removal. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2014. 4482–4486

  77. Zhu L, Fu C W, Lischinski D, et al. Joint bi-layer optimization for single-image rain streak removal. In: Proceedings of IEEE International Conference on Computer Vision, 2017. 2526–2534

  78. Eigen D, Krishnan D, Fergus R. Restoring an image taken through a window covered with dirt or rain. In: Proceedings of IEEE International Conference on Computer Vision, 2013. 633–640

  79. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016. 770–778

  80. Fan Z W, Wu H F, Fu X Y, et al. Residual-guide feature fusion network for single image deraining. 2018. ArXiv:1804.07493

  81. Qian R, Tan R T, Yang W, et al. Attentive generative adversarial network for raindrop removal from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2482–2491

  82. Zhang H, Sindagi V, Patel V M. Image de-raining using a conditional generative adversarial network. IEEE Trans Circ Syst Video Technol, 2020, 30: 3943–3956

    Article  Google Scholar 

  83. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. 2015. ArXiv:1511.07122

  84. Ren D W, Shang W, Zhu P F, et al. Single image deraining using bilateral recurrent network. IEEE Trans Image Process, 2020, 29: 6852–6863

    Article  MATH  Google Scholar 

  85. Fu X, Liang B, Huang Y, et al. Lightweight pyramid networks for image deraining. IEEE Trans Neural Netw Learn Syst, 2020, 31: 1794–1807

    Article  Google Scholar 

  86. Wang H, Xie Q, Wu Y C, et al. Single image rain streaks removal: a review and an exploration. Int J Mach Learn Cyber, 2020, 11: 853–872

    Article  Google Scholar 

  87. Yasarla R, Patel V M. Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 8405–8414

  88. Jiang K, Wang Z Y, Yi P, et al. Multi-scale progressive fusion network for single image deraining. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 8346–8355

  89. Li G B, He X, Zhang W, et al. Non-locally enhanced encoder-decoder network for single image de-raining. 2018. ArXiv:1808.01491

  90. Wang G Q, Sun C M, Sowmya A. ERL-Net: entangled representation learning for single image de-raining. In: Proceedings of IEEE International Conference on Computer Vision, 2019. 5644–5652

  91. Hu X, Fu C W, Zhu L, et al. Depth-attentional features for single-image rain removal. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 8022–8031

  92. Du Y J, Xu J, Qiu Q, et al. Variational image deraining. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, 2020. 2406–2415

  93. Wang H, Wu Y C, Xie Q, et al. Structural residual learning for single image rain removal. Knowl-Based Syst, 2021, 213: 106595

    Article  Google Scholar 

  94. Wang H, Xie Q, Zhao Q, et al. A model-driven deep neural network for single image rain removal. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 3103–3112

  95. Yasarla R, Sindagi V A, Patel V M. Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 2726–2736

  96. Cho J, Jang H, Ha N, et al. Deep unsupervised learning for rain streak removal using time-varying rain streak scene. J Korea Multi Soc, 2019, 22: 1–9

    Google Scholar 

  97. Jin X, Chen Z B, Lin J X, et al. Unsupervised single image deraining with self-supervised constraints. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2019. 2761–2765

  98. Li S Y, Ren W Q, Zhang J W, et al. Single image rain removal via a deep decomposition-composition network. Comput Vision Image Understand, 2019, 186: 48–57

    Article  Google Scholar 

  99. Li R, Cheong L F, Tan R T. Heavy rain image restoration: integrating physics model and conditional adversarial learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 1633–1642

  100. Liu R S, Jiang Z Y, Fan X, et al. Knowledge-driven deep unrolling for robust image layer separation. IEEE Trans Neural Netw Learn Syst, 2020, 31: 1653–1666

    Article  Google Scholar 

  101. Yang W H, Liu J Y, Yang S, et al. Scale-free single image deraining via visibility-enhanced recurrent wavelet learning. IEEE Trans Image Process, 2019, 28: 2948–2961

    Article  MathSciNet  MATH  Google Scholar 

  102. Deng S, Wei M Q, Wang J, et al. Detail-recovery image deraining via context aggregation networks. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 14560–14569

  103. Wang H, Yue Z S, Xie Q, et al. From rain removal to rain generation. 2020. ArXiv:2008.03580

  104. Garg K, Nayar S K. Photorealistic rendering of rain streaks. ACM Trans Graph, 2006, 25: 996–1002

    Article  Google Scholar 

  105. Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process, 2011, 20: 2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  106. Sheikh H R, Bovik A C. Image information and visual quality. IEEE Trans Image Process, 2006, 15: 430–444

    Article  Google Scholar 

  107. Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 2004, 13: 600–612

    Article  Google Scholar 

  108. Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron Lett, 2008, 44: 800–801

    Article  Google Scholar 

  109. Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett, 2013, 20: 209–212

    Article  Google Scholar 

  110. Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process, 2012, 21: 4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  111. Liu L X, Liu B, Huang H, et al. No-reference image quality assessment based on spatial and spectral entropies. Signal Process-Image Commun, 2014, 29: 856–863

    Article  Google Scholar 

  112. Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch. In: Proceedings of the 31st Conference on Neural Information Processing System, 2017

  113. Goyette N, Jodoin P M, Porikli F, et al. Changedetection.net: a new change detection benchmark dataset. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012. 1–8

  114. Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of IEEE International Conference on Computer Vision, 2002

  115. Liu R S, Cheng S H, Ma L, et al. Deep proximal unrolling: algorithmic framework, convergence analysis and applications. IEEE Trans Image Process, 2019, 28: 5013–5026

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2020YFA0713900) and National Natural Science Foundation of China (Grant Nos. 11690011, 61721002, U1811461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, Y., Li, M. et al. Survey on rain removal from videos or a single image. Sci. China Inf. Sci. 65, 111101 (2022). https://doi.org/10.1007/s11432-020-3225-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3225-9

Keywords

Navigation