Skip to main content
Log in

Stability of Quasi-Periodic Orbits in Recurrent Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A simple discrete recurrent neural network model is considered. The local stability is analyzed with the associated characteristic model. In order to study the dynamic behavior of the quasi-periodic orbit, it is necessary to determine the Neimark-Sacker bifurcation. In the case of two neurons, one necessary condition that yields the Neimark-Sacker bifurcation is found. In addition to this, the stability and direction of the Neimark-Sacker bifurcation are determined by applying normal form theory and the center manifold theorem. An example is given and a numerical simulation is performed to illustrate the results. The phase-locking phenomena are analyzed for certain experimental results with Arnold Tongues in a particular weight configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cao J (1999) On stability of delayed cellular neural networks. Phys Lett A 261(5–6): 303–308

    Article  MATH  MathSciNet  Google Scholar 

  2. Coombes S, Bressloff PC (1999) Mode locking and Arnold tongues in integrate-and-fire neural oscillators. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(2B): 2086–2096

    MathSciNet  Google Scholar 

  3. Guo S, Tang X, Huang L (2003) Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 183: 19–44

    Article  MATH  MathSciNet  Google Scholar 

  4. Guo S, Tang X, Huang L (2007) Stability and bifurcation in a discrete system of two neurons with delays. Nonlinear Anal Real World Appl. doi:10.1016/jnonrwa200703002

  5. Guoa S, Tang X, Huang L (2008) Bifurcation analysis in a discrete-time single-directional network with delays. Neurocomputing 71: 1422–1435

    Article  Google Scholar 

  6. Hale J, Kocak H (1991) Dynamics and bifurcations. Springer-Verlag, New York

    MATH  Google Scholar 

  7. He W, Cao J (2007) Stability and bifurcation of a class of discrete-time neural networks. Appl Math Modell 31(10): 2111–2122

    Article  MATH  Google Scholar 

  8. Hush R, Horne BG (1993) Progress in supervised neural networks. IEEE Signal Process Mag 8–39

  9. Kaslik E, Balint S (2007) Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network. Chaos Solitons Fractals 34(4): 1245–1253

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaslik E, Balint S (2009) Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections. Chaos Solitons Fractals 39(1): 83–91

    Article  MathSciNet  Google Scholar 

  11. Kuznetsov YA (2004) Elements of applied bifurcation theory, 3rd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  12. Liao X, Wong K, Wu Z (2001) Bifurcation analysis on a two-neuron system with distributed delays. Physica D 149: 123–141

    Article  MATH  MathSciNet  Google Scholar 

  13. Marcus CM, Westervelt RM (1989) Dynamics of iterated-map neural networks. Phys Rev A 40: 501–504

    Article  MathSciNet  Google Scholar 

  14. Marichal RL, Piñeiro JD, Moreno L, Gonzalez EJ, Sigut J (2006) Bifurcation analysis on Hopfield discrete neural networks. WSEAS Trans Syst 5(1): 119–124

    MATH  Google Scholar 

  15. Martignoli S, Stoop R (2008) Phase-locking and Arnold coding in prototypical network topologies. Discrete Continuous Dyn Syst Ser B 9(1): 145–162

    MATH  MathSciNet  Google Scholar 

  16. Pasemann F (2002) Complex dynamics and the structure of small neural networks. Netw Comput Neural Syst 13(2): 195–216

    MATH  Google Scholar 

  17. Pasemann F, Hild M, Zahedi K (2003) SO2-networks as neural oscillators. In: Proceedings IWANN 2003, LNCS 2686. Springer-Verlag, pp 144–151

  18. Robinson C (1999) Dynamical systems. Stability, symbolic dynamics, and chaos, 2nd edn. CRC Press Inc., Boca Raton

    MATH  Google Scholar 

  19. Tank DW, Hopfield JJ (1984) Neural computation by concentrating information in time. Proc Natl Acad Sci USA 84: 1896–1991

    Article  MathSciNet  Google Scholar 

  20. Tino P et al (2001) Attractive periodic sets in discrete-time recurrent networks (with emphasis on fixed-point stability and bifurcations in two-neuron networks). Neural Comput 13(6): 1379–1414

    Article  MATH  Google Scholar 

  21. Wang X (1992) Discrete-time dynamics of coupled quasi-periodic and chaotic neural network oscillators. Int Joint Conf Neural Netw

  22. Wei J, Jiang W (2006) Stability and bifurcation analysis in a neural network model with delays. Dyn Continuous Discrete Impuls Syst Ser A Math Anal 13(2): 177–192

    MATH  MathSciNet  Google Scholar 

  23. Wei J, Zhang C (2008) Bifurcation analysis of a class of neural networks with delays. Nonlinear Anal Real World Appl 9: 2234–2252

    Article  MATH  MathSciNet  Google Scholar 

  24. Yuan Z, Hu D, Huang L (2004) Stability and bifurcation analysis on a discrete-time system of two neurons. Appl Math Lett 17: 1239–1245

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuan Z, Hu D, Huang L (2005) Stability and bifurcation analysis on a discrete-time neural network. J Comput Appl Math 177: 89–100

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang C, Zheng B (2005) Hopf bifurcation in numerical approximation of a n-dimension neural network model with multi-delays. Chaos Solitons Fractals 25(1): 129–146

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang C, Zheng B (2007) Stability and bifurcation of a two-dimension discrete neural network model with multi-delays. Chaos Solitons Fractals 31(5): 1232–1242

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Marichal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marichal, R.L., Piñeiro, J.D., González, E.J. et al. Stability of Quasi-Periodic Orbits in Recurrent Neural Networks. Neural Process Lett 31, 269–281 (2010). https://doi.org/10.1007/s11063-010-9138-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9138-9

Keywords

Navigation