Skip to main content
Log in

A Mixture of Nuclear Norm and Matrix Factorization for Tensor Completion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a mixture model for tensor completion by combining the nuclear norm with the low-rank matrix factorization. To solve this model, we develop two algorithms: non-smooth low-rank tensor completion (NS-LRTC), smooth low-rank tensor completion (S-LRTC). When the sampling rate (SR) is high, our experiments on real-world data show that the NS-LRTC algorithm outperforms other tested methods in running time and recovery quality. In addition, whatever the SR is, the proposed S-LRTC algorithm delivers state-of-art recovery performance compared with other tested approaches. Although the objective function in our model is non-convex and non-differentiable, we prove that every cluster point of the sequence generated by NS-LRTC or S-LRTC is a stationary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www1.cs.columbia.edu/CAVE/databases/multispectral/.

  2. http://www.osirix-viewer.com/resources/dicom-image-library/.

  3. http://trace.eas.asu.edu/yuv/.

References

  1. De Lathauwer, L., Castaing, J., Cardoso, J.F.: Fourth-order cumulant based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  2. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(1), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vlasic, D., Brand, M., Pfrister, H., Popovic, J.: Face transfer with multilinear models. ACM Trans. Graph. 24(3), 426–433 (2005)

    Article  Google Scholar 

  4. Beylkin, G., Mohlencamp, M.J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. 99(16), 10246–10251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Acar, E., Bingol, C.A., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)

    Article  Google Scholar 

  6. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. In: Proceedings of ACM Siggraph, pp. 414–424. New Orleans, USA (2000)

  7. Komodakis, N., Tziritas, G.: Image completion using global optimization. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp. 417–424 (2006)

  8. Korah, T., Rasmussen, C.: Spatio-temporal impainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(7), 2262–2271 (2007)

    Article  MathSciNet  Google Scholar 

  9. Patwardhan, K.A., Spiro, G., Bertalmio, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)

    Article  MathSciNet  Google Scholar 

  10. Varghees, V.N., Manikandan, M.S., Gini, R.: Adaptive MRI image denoising using total-variation and local noise estimation. In: Processing of the 2012 International Conference on Advances in Engineering, Science and Management(ICAESM), pp. 506–511 (2012)

  11. Li, N., Li, B.: Tensor completion for on-board compression of hyperspectral images. In: 17th IEEE international conference on image processing (ICIP), IEEE, pp. 517–520 (2010)

  12. Xing, Z.G., Zhou, M., Castrodad, A., Saprio, G., Carin, L.: Dictionary learning for noisy and incomplete hyperspectral images. SIAM J. Imaging Sci. 5(1), 33–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Y., Jiao, L., Shang, F.: An efficient matrix factorization method for tensor completion. IEEE Signal Process. Lett. 20(4), 307–310 (2013)

    Article  Google Scholar��

  14. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. Proc. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Progr. 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Toh, K.C., Tun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Progr. Comput. 4(4), 1–29 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer. Anal. 32(1), 227–245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. J. Front. Math. China Spec. Issue Comput. Math. 7(2), 365–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  21. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  22. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kruskal, J. B.: Rank decomposition and uniqueness for 3-way and N-way arrays. In: Multiway Data Analysis, pp. 7–18 (1988)

  27. Liu, J., Musialski, P., Wonka, P., Yw, J.P.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 1126–1153 (2013)

    Google Scholar 

  28. Kolda, G., Bader, W.: Tensor decomposition and application. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y.Y., Hao, R.R., Yin, W.T., Su, Z.X.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tseng, P.: Convergence of a block coordinate descent method for non-differential minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wen, Z.W., Yin, W.T., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cai, J.F., Candès, F.J., Shen, Z.: A singular value thresholding decomposition, UCLA CAM Report (2010)

  34. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum, arXiv:1605.07272v3 [cs.LG] (2017)

  35. Nesterov, Y.: Smooth minimization of non-smooth function. Math. Progr. 20(6), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yunus, A., Coskun, K., Akbar, A., Ismail, K., Fatemeh, K.: Uniform-geometric distribution. J. Stat. Comput. Simul. 86(9), 1754–1770 (2016)

    Article  MathSciNet  Google Scholar 

  37. Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)

    MATH  Google Scholar 

  38. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equation in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  39. Dimitri, P.: Bertsekas, Nonlinear Programming, 208–211, 2nd edn. Athena Scientific, Nashua (1999)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their detailed comment, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Fan.

Additional information

This research was supported by the National Science Foundation of China under Grant 61179039 and the National Key Basic Research Development Program (973 Program) of China under Grant 2011CB707100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Fan, Q. A Mixture of Nuclear Norm and Matrix Factorization for Tensor Completion. J Sci Comput 75, 43–64 (2018). https://doi.org/10.1007/s10915-017-0521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0521-9

Keywords

Navigation