Skip to main content
Log in

Kinematic optimization for bipedal robots: a framework for real-time collision avoidance

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Bipedal locomotion is more than dynamically stable walking. The redundant kinematic design of humanoid robots allows for complex motions in complex scenarios. One challenge of current robotic research is the exploitation of the capacities of redundant robots in real-time applications. In this paper, we present and evaluate methods for real-time motion generation of redundant robots. The proposed methods are based on a model-predictive approach. We propose and compare methods for optimization of robot motions defined by parameterized task-space trajectories and for redundancy resolution. The approaches are successfully combined in a novel algorithm. The methods are introduced with the help of a minimal model. It shows their applicability for a wide range of complex robotic systems. We apply and validate their effectiveness and their real-time character in several experiments with different environments with the humanoid robot Lola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. ASUS Xtion PRO LIVE, see http://www.asus.com/Multimedia/Xtion_PRO_LIVE/.

  2. Available under https://github.com/am-lola/lepp3.

  3. Compare the videos of the experiments in https://youtu.be/6diLLVv41Vw or in https://youtu.be/rKsx8HKvBkg.

  4. The whole planning process has to be done in less than \(T_{Step}\).

References

  • Arbulu, M., Kheddar, A., & Yoshida, E. (2010). An approach of generic solution for humanoid stepping over motion. In IEEE-RAS international conference on humanoid robots.

  • Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., & Yoshida, E. (2011). Real-time replanning using 3D environment for humanoid robot. In IEEE-RAS international conference on humanoid robots.

  • Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.

    Article  MATH  Google Scholar 

  • Bocek, M. (1980). Conjugate gradient algorithm for optimal control problems with parameters. Kybernetika, 16(5), 454–461.

    MathSciNet  MATH  Google Scholar 

  • Buschmann, T. (2010). Simulation and Control of biped walking robots. Ph.D. thesis, Technical University of Munich.

  • Buschmann, T., Favot, V., Lohmeier, S., Schwienbacher, M., & Ulbrich, H. (2011). Experiments in fast biped walking. In IEEE International conference on mechatronics.

  • Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., & Pfeiffer, F. (2007). A collocation method for real-time walking pattern generation. In IEEE/RAS international conference on humanoid robots.

  • Buschmann, T., Lohmeier, S., Schwienbacher, M., Favot, V., Ulbrich, H., von Hundelshausen, F., Rohe, G., & Wuensche, H.J. (2010). Walking in unknown environments—A step towards more autonomy. In IEEE-RAS international conference on humanoid robots.

  • Buschmann, T., Lohmeier, S., & Ulbrich, H. (2009). Biped walking control based on hybrid position/force control. In IEEE-RSJ international conference on intelligent robots and systems.

  • Buschmann, T., Lohmeier, S., Ulbrich, H., & Pfeiffer, F. (2005). Optimization based gait pattern generation for a biped robot. In IEEE-RAS international conference on humanoid robots.

  • Chestnutt, J., Takaoka, Y., Suga, K., Nishiwaki, K., Kuffner, J., & Kagami, S. (2009). Biped navigation in rough environments using on-board sensing. In IEEE/RSJ international conference on intelligent robots and systems.

  • Chitta, S., Sucan, I., & Cousins, S. (2012). MoveIt! [ROS topics]. IEEE Robotics & Automation Magazine, 19(1), 18–19.

    Article  Google Scholar 

  • Englsberger, J., Ott, C., Roa, M.A., & Hirzinger, G. (2011). Bipedal walking control based on capture point dynamics. In IEEE/RSJ international conference on intelligent robots and systems.

  • Fallon, M. F., Marion, P., Deits, R., Whelan, T., Antone, M., Mcdonald, J., & Tedrake, R. (2015). Continuous humanoid locomotion over uneven terrain using stereo fusion. In IEEE/RAS international conference on humanoid robots.

  • Gienger, M., Toussaint, M., Jetchev, N., Bendig, A., & Goerick, C. (2008). Optimization of fluent approach and grasp motions. In IEEE-RAS international conference on humanoid robots.

  • Guan, Y., Yokoi, K., & Tanie, K. (2005). Feasibility: Can humanoid robots overcome given obstacles? In IEEE international conference on robotics and automation.

  • Guan, Y., Yokoi, K., & Tanie, K. (2006). Stepping over obstacles with humanoid robots. IEEE Transactions on Robotics, 22(5), 958–973.

    Article  Google Scholar 

  • Hildebrandt, A. C., Demmeler, M., Wittmann, R., Wahrmann, D., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Real-time predictive kinematic evaluation and optimization for biped robots. In IEEE/RSJ international conference on intelligent robots and systems.

  • Hildebrandt, A. C., Wahrmann, D., Wittmann, R., Rixen, D., & Buschmann, T. (2015). Real-time pattern generation among obstacles for biped robots. In IEEE/RSJ international conference on intelligent robots and systems.

  • Hildebrandt, A. C., Wittmann, R., Sygulla, F., Wahrmann, D., Rixen, D., & Buschmann, T. (2017). Versatile and robust bipedal walking in unknown environments (submitted). IEEE Transactions on Robotics.

  • Hildebrandt, A. C., Wittmann, R., Wahrmann, D., Ewald, A., & Buschmann, T. (2014). Real-time 3D collision avoidance for biped robots. In IEEE/RSJ international conference on intelligent robots and systems.

  • Hornung, A., & Bennewitz, M. (2012). Adaptive Level-of-Detail Planning for Efficient Humanoid Navigation. In IEEE international conference on robotics and automation.

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE international conference on robotics and automation, IEEE (pp. 1620–1626).

  • Koch, K. H., Mombaur, K., Stasse, O., Soueres, P., Koch, K.H., Mombaur, K., Stasse, O., & Optimization, P. S. (2014). Optimization based exploitation of the ankle elasticity of HRP-2 for overstepping large obstacles. In IEEE-RAS international conference on humanoid robots.

  • Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, 12, 868–871.

    MATH  Google Scholar 

  • Lohmeier, S., Buschmann, T., & Ulbrich, H. (2009). System design and control of anthropomorphic walking robot LOLA. IEEE/ASME Transactions on Mechatronics, 14(6), 658–666.

    Article  Google Scholar 

  • Nakamura, Y., & Hanafusa, H. (1987). Optimal redundancy control of robot manipulators. The International Journal of Robotics Research, 6(1), 32–42.

    Article  Google Scholar 

  • Neunert, M., Farshidian, F., Winkler, A. W., & Buchli, J. (2017). Trajectory optimization through contacts and automatic gait discovery for quadrupeds. IEEE Robotics and Automation Letters, 2(3), 1502–1509.

    Article  Google Scholar 

  • Nishiwaki, K. (2011). Online design of torso height trajectories for walking patterns that takes future kinematic limits into consideration. In International conference on control, automation and systems.

  • Nishiwaki, K., Chestnutt, J., & Kagami, S. (2012). Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. The International Journal of Robotics Research, 31(11), 1251–1262.

    Article  Google Scholar 

  • Ott, C., Dietrich, A., & Albu-Schäffer, A. (2015). Prioritized multi-task compliance control of redundant manipulators. Automatica, 53, 416–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Schuetz, C. (2017). Trajectory planning for redundant manipulators. Ph.D. thesis, Technical University of Munich.

  • Schuetz, C., Buschmann, T., Baur, J., Pfaff, J., & Ulbrich, H. (2014). Predictive online inverse kinematics for redundant manipulators. In IEEE international conference on robotics and automation.

  • Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and systems.

  • Schwienbacher, M. (2012). Vertical angular momentum minimization for biped robots with kinematically redundant joints. In International congress of theoretical and applied mechanics.

  • Schwienbacher, M., Buschmann, T., Lohmeier, S., Favot, V., & Ulbrich, H. (2011). Self-collision avoidance and angular momentum compensation for a biped humanoid robot. In IEEE international conference on robotics and automation.

  • Stasse, O., Verrelst, B., Vanderborght, B., & Yokoi, K. (2009). Strategies for humanoid robots to dynamically walk over large obstacles. IEEE Transactions on Robotics, 25(4), 960–967.

    Article  Google Scholar 

  • Stumpf, A., Kohlbrecher, S., Conner, D. C., & Stryk, O. V. (2014). Supervised footstep planning for humanoid robots in rough terrain tasks using a black box walking controller. In IEEE-RAS international conference on humanoid robots.

  • Takenaka, T., Matsumoto, T., & Yoshiike, T. (2009). Real time motion generation and control for biped robot—3rd report: dynamics error compensation-. In IEEE/RSJ international conference on intelligent robots and systems.

  • Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization of complex behaviors through online trajectory optimization. In IEEE/RSJ international conference on intelligent robots and systems.

  • Toussaint, M., Gienger, M., & Goerick. C. (2007). Optimization of sequential attractor-based movement for compact behaviour generation. In IEEE-RAS international conference on humanoid robots.

  • Urata, J., Nishiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., & Inaba, M. (2011). Online decision of foot placement using singular LQ preview regulation. In IEEE-RAS international conference on humanoid robots.

  • Verrelst, B., Stasse, O., Yokoi, K., & Vanderborght, B. (2006). Dynamically stepping over obstacles by the humanoid robot HRP-2. In IEEE-RAS international conference on humanoid robots.

  • Wahrmann, D., Hildebrandt, A. C., Wittmann, R., Rixen, D., & Buschmann, T. (2016). Fast object approximation for real-time 3D obstacle avoidance with biped robots. In IEEE international conference on advanced intelligent mechatronics.

  • Whitney, D. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man–Machine Systems, 10(2), 47–53.

    Article  MathSciNet  Google Scholar 

  • Wittmann, R., Hildebrandt, A. C., Ewald, A., & Buschmann, T. (2014). An estimation model for footstep modifications of biped robots. In IEEE/RSJ international conference on intelligent robots and systems.

  • Wittmann, R., Hildebrandt, A. C., Wahrmann, D., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Model-based predictive bipedal walking stabilization. In IEEE-RAS international conference on humanoid robots.

  • Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., et al. (2013). CHOMP: Covariant Hamiltonian optimization for motion planning. The International Journal of Robotics Research, 32(9–10), 1164–1193.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the DAAD and the Deutsche Forschungsgemeinschaft (DFG—Project BU 2736/1-1) for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne-Christoph Hildebrandt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Gradients for optimization of redundancy

Considering the function \(\varvec{f}= \varvec{f}(\varvec{q},\varvec{u},p) = \dot{\varvec{q}}\) as shown in (10) and the Moore–Penrose pseudoinverse \(\varvec{J}^{\#} = \varvec{J}^T(\varvec{J}\varvec{J}^T)^{-1} \), the analytical gradients necessary for redundancy optimization can be formulated as follows:

$$\begin{aligned} \frac{\partial \varvec{f}}{\partial \varvec{q}}= & {} \frac{\partial \dot{\varvec{q}}}{\partial \varvec{q}} = \frac{\partial \varvec{J}^{\#}}{\partial \varvec{q}}\dot{\varvec{w}} - \left( \frac{\partial \varvec{J}^{\#}}{\partial \varvec{q}} \varvec{J}- \varvec{J}^{\#}\frac{\partial \varvec{J}}{\partial \varvec{q}} \right) \varvec{u}\end{aligned}$$
(31)
$$\begin{aligned} \frac{\partial \varvec{f}}{\partial \varvec{u}}= & {} \varvec{I}- \varvec{J}^{\#}\varvec{J}\end{aligned}$$
(32)
$$\begin{aligned} \frac{\partial \varvec{J}^{\#}}{\partial \varvec{q}}= & {} \frac{\partial \varvec{J}^{T}}{\partial \varvec{q}} \left( \varvec{J}\varvec{J}^T\right) ^{-1} + \varvec{J}^T \left[ - \left( \varvec{J}\varvec{J}^T\right) ^{-1} \dots \right. \nonumber \\&\left. \left( \frac{\partial \varvec{J}}{\partial \varvec{q}} \varvec{J}^{T} + \varvec{J}\frac{\partial \varvec{J}^{T}}{\partial \varvec{q}} \right) \left( \varvec{J}\varvec{J}^T \right) ^{-1} \right] \end{aligned}$$
(33)
$$\begin{aligned} \left( \frac{\partial L_{cmf}}{\partial \varvec{q}}\right) ^{T}= & {} 2\left( \varvec{q}- \varvec{q}_{cmf}\right) \end{aligned}$$
(34)
$$\begin{aligned} \left( \frac{\partial L_{vel}}{\partial \varvec{q}}\right) ^{T}= & {} 2 \left( \frac{\partial \varvec{f}}{\partial \varvec{q}}\right) ^T\dot{\varvec{q}} \end{aligned}$$
(35)
$$\begin{aligned} \left( \frac{\partial L_{vel}}{\partial \varvec{u}}\right) ^{T}= & {} 2 \left( \frac{\partial \varvec{f}}{\partial \varvec{u}}\right) ^T\dot{\varvec{q}} \end{aligned}$$
(36)

with \(\varvec{q}_{cmf}\) a user defined comfort pose. For cost gradients regarding collision avoidance and joint limits, we refer to Buschmann et al. (2009) and Schuetz et al. (2014) respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hildebrandt, AC., Schwerd, S., Wittmann, R. et al. Kinematic optimization for bipedal robots: a framework for real-time collision avoidance. Auton Robot 43, 1187–1205 (2019). https://doi.org/10.1007/s10514-018-9789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9789-3

Keywords

Navigation