Skip to main content

Can We Transfer Noise Patterns? A Multi-environment Spectrum Analysis Model Using Generated Cases

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1969))

Included in the following conference series:

  • 755 Accesses

Abstract

Spectrum analysis systems in online water quality testing are designed to detect types and concentrations of pollutants and enable regulatory agencies to respond promptly to pollution incidents. However, spectral data-based testing devices suffer from complex noise patterns when deployed in non-laboratory environments. To make the analysis model applicable to more environments, we propose a noise patterns transferring model, which takes the spectrum of standard water samples in different environments as cases and learns the differences in their noise patterns, thus enabling noise patterns to transfer to unknown samples. Unfortunately, the inevitable sample-level baseline noise makes the model unable to obtain the paired data that only differ in dataset-level environmental noise. To address the problem, we generate a sample-to-sample case-base to exclude the interference of sample-level noise on dataset-level noise learning, enhancing the system’s learning performance. Experiments on spectral data with different background noises demonstrate the good noise-transferring ability of the proposed method against baseline systems ranging from wavelet denoising, deep neural networks, and generative models. From this research, we posit that our method can enhance the performance of DL models by generating high-quality cases. The source code is made publicly available online at https://github.com/Magnomic/CNST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 79.99
Price excludes VAT (USA)
Softcover Book
USD 99.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdessamad, E., Saadane, R., El Aroussi, M., Wahbi, M., Hamdoun, A.: Spectrum sensing with an improved energy detection. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS), pp. 895–900. IEEE (2014)

    Google Scholar 

  2. An, Y., et al.: Current state and future directions for deep learning based automatic seismic fault interpretation: a systematic review. Earth Sci. Rev. 243, 104509 (2023)

    Article  Google Scholar 

  3. Bukin, O., et al.: New solutions of laser-induced fluorescence for oil pollution monitoring at sea. Photonics 7, 36 (2020)

    Article  Google Scholar 

  4. Chandra, B., Sharma, R.K.: Adaptive noise schedule for denoising autoencoder. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 535–542. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_67

    Chapter  Google Scholar 

  5. Chen, S., et al.: Olive oil classification with laser-induced fluorescence (LIF) spectra using 1-dimensional convolutional neural network and dual convolution structure model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 279, 121418 (2022)

    Article  Google Scholar 

  6. Du, H.: Laser-induced fluorescence spectral data of humic acid solution in different noise patterns (2023). https://doi.org/10.21227/7r0c-mf67

  7. Du, H., et al.: Disentangling noise patterns from seismic images: noise reduction and style transfer. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  8. He, W., Zi, Y., Chen, B., Wang, S., He, Z.: Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis. Sci. China Technol. Sci. 56, 1956–1965 (2013)

    Article  Google Scholar 

  9. Hu, F., et al.: Identification of mine water inrush using laser-induced fluorescence spectroscopy combined with one-dimensional convolutional neural network. RSC Adv. 9(14), 7673–7679 (2019)

    Article  Google Scholar 

  10. Hu, F., et al.: Selection of characteristic wavelengths using SPA for laser induced fluorescence spectroscopy of mine water inrush. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 219, 367–374 (2019)

    Article  Google Scholar 

  11. Kaneko, T., Kameoka, H., Hiramatsu, K., Kashino, K.: Sequence-to-sequence voice conversion with similarity metric learned using generative adversarial networks. In: Interspeech, vol. 2017, pp. 1283–1287 (2017)

    Google Scholar 

  12. Kaneko, T., Kameoka, H., Tanaka, K., Hojo, N.: CycleGAN-VC2: improved CycleGAN-based non-parallel voice conversion. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 6820–6824. IEEE (2019)

    Google Scholar 

  13. Kazemzadeh, M., Hisey, C.L., Zargar-Shoshtari, K., Xu, W., Broderick, N.G.: Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Optics Commun. 510, 127977 (2022)

    Article  Google Scholar 

  14. Kenny, E.M., Keane, M.T.: On generating plausible counterfactual and semi-factual explanations for deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11575–11585 (2021)

    Google Scholar 

  15. Kwon, Y.H., Park, M.G.: Predicting future frames using retrospective cycle GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1811–1820 (2019)

    Google Scholar 

  16. Laurent, G., Woelffel, W., Barret-Vivin, V., Gouillart, E., Bonhomme, C.: Denoising applied to spectroscopies-part i: concept and limits. Appl. Spectrosc. Rev. 54(7), 602–630 (2019)

    Article  Google Scholar 

  17. Liu, Z., Wu, H., Du, H., Luo, Z., Tang, M.: Distributed temperature and curvature sensing based on Raman scattering in few-mode fiber. IEEE Sens. J. 22(23), 22620–22626 (2022)

    Article  Google Scholar 

  18. Loh, W., et al.: Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588(7837), 244–249 (2020)

    Article  Google Scholar 

  19. Peng, X., et al.: Contour-enhanced CycleGAN framework for style transfer from scenery photos to Chinese landscape paintings. Neural Comput. Appl. 34(20), 18075–18096 (2022)

    Article  Google Scholar 

  20. Santos, G.J.E., Rivera, M., Eiswirth, M., Parmananda, P.: Effects of noise near a homoclinic bifurcation in an electrochemical system. Phys. Rev. E 70(2), 021103 (2004)

    Article  Google Scholar 

  21. Sobolev, I., Babichenko, S.: Application of the wavelet transform for feature extraction in the analysis of hyperspectral laser-induced fluorescence data. Int. J. Remote Sens. 34(20), 7218–7235 (2013)

    Article  Google Scholar 

  22. Tian, Z., et al.: Rapid water quality assessment by micro laser–induced fluorescence spectrometer. In: Advanced Solid State Lasers. Optica Publishing Group (2019). Paper JTh3A.46

    Google Scholar 

  23. Turner, J.T., Floyd, M.W., Gupta, K., Oates, T.: NOD-CC: a hybrid CBR-CNN architecture for novel object discovery. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 373–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_25

    Chapter  Google Scholar 

  24. Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery using case-based reasoning and convolutional neural networks. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 399–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_27

    Chapter  Google Scholar 

  25. Wang, H., Zhao, Z., Wang, Z., Xu, G., Wang, L.: Independent component analysis-based baseline drift interference suppression of portable spectrometer for optical electronic nose of internet of things. IEEE Trans. Industr. Inf. 16(4), 2698–2706 (2019)

    Article  Google Scholar 

  26. Yang, Z., Albrow-Owen, T., Cai, W., Hasan, T.: Miniaturization of optical spectrometers. Science 371(6528), eabe0722 (2021)

    Article  Google Scholar 

  27. Zacharioudaki, D.E., Fitilis, I., Kotti, M.: Review of fluorescence spectroscopy in environmental quality applications. Molecules 27(15), 4801 (2022)

    Article  Google Scholar 

  28. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This document is the results of the research project funded by the Science Foundation Ireland (SFI) [SFI/12/RC/2289_P2]; Beijing Dublin International College Fund; China scholarship council Grant 202106120101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongjie Zhu or Ruihai Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, H. et al. (2024). Can We Transfer Noise Patterns? A Multi-environment Spectrum Analysis Model Using Generated Cases. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1969. Springer, Singapore. https://doi.org/10.1007/978-981-99-8184-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8184-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8183-0

  • Online ISBN: 978-981-99-8184-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics