Skip to main content

Unsupervised Training of Neural Cellular Automata on Edge Devices

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

The disparity in access to machine learning tools for medical imaging across different regions significantly limits the potential for universal healthcare innovation, particularly in remote areas. Our research addresses this issue by implementing Neural Cellular Automata (NCA) training directly on smartphones for accessible X-ray lung segmentation. We confirm the practicality and feasibility of deploying and training these advanced models on five Android devices, improving medical diagnostics accessibility and bridging the tech divide to extend machine learning benefits in medical imaging to low- and middle-income countries (LMICs). We further enhance this approach with an unsupervised adaptation method using the novel Variance-Weighted Segmentation Loss (VWSL), which efficiently learns from unlabeled data by minimizing the variance from multiple NCA predictions. This strategy notably improves model adaptability and performance across diverse medical imaging contexts without the need for extensive computational resources or labeled datasets, effectively lowering the participation threshold. Our methodology, tested on three multisite X-ray datasets-Padchest, ChestX-ray8, and MIMIC-III-demonstrates improvements in segmentation Dice accuracy by 0.7 to 2.8%, compared to the classic Med-NCA. Additionally, in extreme cases where no digital copy is available and images must be captured by a phone from an X-ray lightbox or monitor, VWSL enhances Dice accuracy by 5–20%, demonstrating the method’s robustness even with suboptimal image sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 89.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Adam, D.: Medical AI could be’dangerous’ for poorer nations, who warns. Nature (2024)

    Google Scholar 

  3. Ajani, T.S., Imoize, A.L., Atayero, A.A.: An overview of machine learning within embedded and mobile devices–optimizations and applications. Sensors 21(13),  4412 (2021)

    Google Scholar 

  4. Bustos, A., Pertusa, A., Salinas, J.M., De La Iglesia-Vaya, M.: Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Google Scholar 

  5. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Frija, G., Blažić, I., Frush, D.P., Hierath, M., Kawooya, M., Donoso-Bach, L., Brkljačić, B.: How to improve access to medical imaging in low-and middle-income countries? EClinicalMedicine 38, 101034 (2021)

    Article  Google Scholar 

  7. Gaggion, N., Mosquera, C., Mansilla, L., Aineseder, M., Milone, D.H., Ferrante, E.: Chexmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images. arXiv preprint arXiv:2307.03293 (2023)

  8. Gilpin, W.: Cellular automata as convolutional neural networks. Physical Review E 100(3), 032402 (2019)

    Article  Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Google Scholar 

  10. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data 3(1),  1–9 (2016)

    Google Scholar 

  11. Kalkhof, J., González, C., Mukhopadhyay, A.: Med-NCA: Robust and Lightweight Segmentation with Neural Cellular Automata. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging, IPMI 2023, LNCS, vol. 13939, pp. 705–16. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_54

  12. Kalkhof, J., Mukhopadhyay, A.: M3D-NCA: robust 3d segmentation with built-in quality control. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14222, pp. 169–178. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_17

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. McCool, J., Dobson, R., Whittaker, R., Paton, C.: Mobile health (mhealth) in low-and middle-income countries. Annual Review of Public Health 43, 525–539 (2022)

    Article  Google Scholar 

  15. Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M.: Growing neural cellular automata. Distill 5(2),  e23 (2020)

    Article  Google Scholar 

  16. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  17. Perez-Garcia, F.: fepegar/unet: First published version of PyTorch U-Net, October 2019. https://doi.org/10.5281/zenodo.3522306

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, MICCAI 2015, LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kalkhof .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 746 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalkhof, J., Ranem, A., Mukhopadhyay, A. (2024). Unsupervised Training of Neural Cellular Automata on Edge Devices. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics