Skip to main content

A Potential Function for a Variable-Metric Evolution Strategy

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

This paper works towards an analysis of a variable-metric evolution strategy by means of drift analysis. Drift analysis has been effective for proving convergence and analyzing the runtime of a simple (1+1)-ES. We make a first step towards including covariance matrix adaptation (CMA). To this end, we develop a novel class of potential functions for the (1+1)-CMA-ES optimizing two-dimensional convex quadratic functions. We leverage invariances to efficiently sample a representative space of states. We use simulations to gain an empirical estimate of the expected minimal drift induced by the candidate potential function and to tune potential function parameters. Our results indicate that the tuned potential function is negative and uniformly bounded away from zero, which yields linear convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 64.99
Price excludes VAT (USA)
Softcover Book
USD 79.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under slight misuse of notation, we incorporate the step size into the covariance matrix at this point, writing C instead of \(\sigma ^2 C\) from now on. The parameter \(\sigma \) is re-introduced in the normal form, see equation (1).

  2. 2.

    https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf.

  3. 3.

    https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/tree/main/plots.

References

  1. Akimoto, Y., Auger, A., Glasmachers, T.: Drift theory in continuous search spaces: expected hitting time of the (1+1)-ES with 1/5 success rule. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 801–808 (2018)

    Google Scholar 

  2. Akimoto, Y., Auger, A., Glasmachers, T., Morinaga, D.: Global linear convergence of evolution strategies on more than smooth strongly convex functions. SIAM J. Optim. 32(2), 1402–1429 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bennet, P., Doerr, C., Moreau, A., Rapin, J., Teytaud, F., Teytaud, O.: Nevergrad: black-box optimization platform. ACM SIGEVOlution 14(1), 8–15 (2021)

    Article  Google Scholar 

  4. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04378-3

    Book  Google Scholar 

  5. Correa, C.R., Wanner, E.F., Fonseca, C.M.: Lyapunov design of a simple step-size adaptation strategy based on success. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 101–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_10

    Chapter  Google Scholar 

  6. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 14(3), 502–525 (1982)

    Article  MathSciNet  Google Scholar 

  7. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010)

    Google Scholar 

  8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  9. Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 1, pp. 453–460 (2006)

    Google Scholar 

  10. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theoret. Comput. Sci. 379(3), 329–347 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms-a comparative review. Nat. Comput. 3(1), 77–112 (2004)

    Article  MathSciNet  Google Scholar 

  12. Lehre, P.K., Witt, C.: General drift analysis with tail bounds. arXiv preprint arXiv:1307.2559 (2013)

  13. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 89–131 (2020)

    Google Scholar 

  14. Morinaga, D., Akimoto, Y.: Generalized drift analysis in continuous domain: linear convergence of (1+ 1)-ES on strongly convex functions with lipschitz continuous gradients. In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp. 13–24 (2019)

    Google Scholar 

  15. Morinaga, D., Fukuchi, K., Sakuma, J., Akimoto, Y.: Convergence rate of the (1+ 1)-evolution strategy on locally strongly convex functions with lipschitz continuous gradient and their monotonic transformations. Technical Report arXiv:2209.12467, arXiv.org (2022)

  16. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete optimization. In: Theory of Randomized Search Heuristics: Foundations and Recent Developments, pp. 21–52. World Scientific (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frank, S., Glasmachers, T. (2024). A Potential Function for a Variable-Metric Evolution Strategy. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70068-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70067-5

  • Online ISBN: 978-3-031-70068-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics