Skip to main content

Towards Comprehensive Modeling of CPSs to Discover and Study Interdependencies

  • Conference paper
  • First Online:
Computer Security. ESORICS 2022 International Workshops (ESORICS 2022)

Abstract

To a large extent, modeling Cyber-Physical systems (CPSs) and interdependency analysis collaborate in the security enhancement of CPSs and form the basis of various research domains such as risk propagation, attack path analysis, reliability analysis, robustness evaluation, and fault identification. Interdependency analysis as well as modeling of interdependent systems such as CPSs rely on the understanding of system dynamics and flows. Despite the major efforts, previously developed methods could not provide the required knowledge as they have either followed data-driven or physics-based modeling approaches. To fill this gap, we propose a new modeling approach called BG2 based on Graph theory and Bond graph. Our proposed method is able to portray the physical process of CPSs from different domains and capture both information and commodity flows. Based on the fundamental characteristics of the Graph theory and Bond graph in the BG2 model, we discover higher order of dependencies in CPSs and analyze causal relationships within the system components. We illustrate the workings of the proposed method by applying it to a realistic case study of a CPS in the energy domain. The results provide valuable insight into the dependencies among the system components and substantiate the applicability of the proposed method in modeling and analyzing interdependent systems.

This work was supported by the Research Council of Norway under project 280617 (Cyber-Physical Security in Energy Infrastructure of Smart Cities - CPSEC) and under project 310105 (Norwegian Centre for Cybersecurity in Critical Sectors - NORCICS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 79.99
Price excludes VAT (USA)
Softcover Book
USD 99.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study-Maroochy water services, Australia. Technical report, MITRE CORP MCLEAN VA MCLEAN (2008)

    Google Scholar 

  2. Addeen, H.H., Xiao, Y., Li, J., Guizani, M.: A survey of cyber-physical attacks and detection methods in smart water distribution systems. IEEE Access 9, 99905–99921 (2021)

    Article  Google Scholar 

  3. Akbarzadeh, A., Katsikas, S.: Identifying critical components in large scale cyber physical systems. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, pp. 230–236 (2020)

    Google Scholar 

  4. Akbarzadeh, A., Katsikas, S.: Identifying and analyzing dependencies in and among complex cyber physical systems. Sensors 21(5), 1685 (2021)

    Article  Google Scholar 

  5. Akbarzadeh, A., Katsikas, S.: Dependency-based security risk assessment for cyber-physical systems. Int. J. Inf. Secur. (2022)

    Google Scholar 

  6. Akbarzadeh, A., Katsikas, S.: Unified it &ot modeling for cybersecurity analysis of cyber-physical systems. IEEE Open J. Industr. Electron. Soc. (2022)

    Google Scholar 

  7. Akbarzadeh, A., Pandey, P., Katsikas, S.: Cyber-physical interdependencies in power plant systems: a review of cyber security risks. In: 2019 IEEE Conference on Information and Communication Technology, pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Ashibani, Y., Mahmoud, Q.H.: Cyber physical systems security: analysis, challenges and solutions. Comput. Secur. 68, 81–97 (2017)

    Article  Google Scholar 

  9. Benmoussa, S., Bouamama, B.O., Merzouki, R.: Bond graph approach for plant fault detection and isolation: application to intelligent autonomous vehicle. IEEE Trans. Autom. Sci. Eng. 11(2), 585–593 (2013)

    Article  Google Scholar 

  10. Borutzky, W.: Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models. Springer, London (2009). https://doi.org/10.1007/978-1-84882-882-7

    Book  Google Scholar 

  11. Carhart, N., Rosenberg, G.: A framework for characterising infrastructure interdependencies. Int. J. Complex. Appl. Sci. Technol. 1(1), 35–60 (2016)

    Article  Google Scholar 

  12. Carreira, P., Amaral, V., Vangheluwe, H.: Foundations of Multi-paradigm Modelling for Cyber-Physical Systems. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43946-0

    Book  Google Scholar 

  13. Chen, T.M., Abu-Nimeh, S.: Lessons from stuxnet. Computer 44(4), 91–93 (2011)

    Article  Google Scholar 

  14. Chen, Y., et al.: Cascading failure analysis of cyber physical power system with multiple interdependency and control threshold. IEEE Access 6, 39353–39362 (2018)

    Article  Google Scholar 

  15. Falahati, B., Fu, Y.: Reliability assessment of smart grids considering indirect cyber-power interdependencies. IEEE Trans. Smart Grid 5(4), 1677–1685 (2014)

    Article  Google Scholar 

  16. Graja, I., Kallel, S., Guermouche, N., Cheikhrouhou, S., Hadj Kacem, A.: A comprehensive survey on modeling of cyber-physical systems. Concurr. Comput. Pract. Exp. 32(15), e4850 (2020)

    Article  Google Scholar 

  17. Griffor, E.R., Greer, C., Wollman, D.A., Burns, M.J.: Framework for cyber-physical systems: Volume 1, overview. Technical report (2017)

    Google Scholar 

  18. Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., Achiche, S.: Design, modelling, simulation and integration of cyber physical systems: methods and applications. Comput. Ind. 82, 273–289 (2016)

    Article  Google Scholar 

  19. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visualization through data reduction and attack grouping. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 68–79. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85933-8_7

    Chapter  Google Scholar 

  20. House, W.: The national strategy for the physical protection of critical infrastructures and key assets (2003). http://www.whitehouse.gov/pcipb/physical_strategy.pdf

  21. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-physical systems. In: 2011 7th International Wireless Communications and Mobile Computing Conference, pp. 1666–1671. IEEE (2011)

    Google Scholar 

  22. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 9(2), 350–365 (2014)

    Article  Google Scholar 

  23. Kotzanikolaou, P., Theoharidou, M., Gritzalis, D.: Assessing n-order dependencies between critical infrastructures. Int. J. Crit. Infrastruct. 6 9(1–2), 93–110 (2013)

    Google Scholar 

  24. Krotofil, M., Kursawe, K., Gollmann, D.: Securing industrial control systems. In: Alcaraz, C. (ed.) Security and Privacy Trends in the Industrial Internet of Things. ASTSA, pp. 3–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12330-7_1

    Chapter  Google Scholar 

  25. Kumar, P., Merzouki, R., Bouamama, B.O., Koubeissi, A.: Bond graph modeling of a class of system of systems. In: 2015 10th System of Systems Engineering Conference (SoSE), pp. 280–285. IEEE (2015)

    Google Scholar 

  26. Li, X., Yu, W.: A hybrid fuzzy petri nets and neural networks framework for modeling critical infrastructure systems. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2018)

    Google Scholar 

  27. Marashi, K., Sarvestani, S.S.: Towards comprehensive modeling of reliability for smart grids: requirements and challenges. In: 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, pp. 105–112. IEEE (2014)

    Google Scholar 

  28. Marashi, K., Sarvestani, S.S., Hurson, A.R.: Identification of interdependencies and prediction of fault propagation for cyber-physical systems. Reliab. Eng. Syst. Saf. 215, 107787 (2021)

    Article  Google Scholar 

  29. Mathew, J., Ma, L., Tan, A., Weijnen, M., Lee, J.: Engineering Asset Management and Infrastructure Sustainability. Proceedings of the 5th World Congress on Engineering Asset Management (WCEAM 2010). Springer, London (2011). https://doi.org/10.1007/978-0-85729-493-7

  30. Merzouki, R., Samantaray, A.K., Pathak, P.M., Bouamama, B.O.: Intelligent Mechatronic Systems: Modeling, Control and Diagnosis. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4628-5

  31. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Google Scholar 

  32. Pan, S., Morris, T., Adhikari, U.: Classification of disturbances and cyber-attacks in power systems using heterogeneous time-synchronized data. IEEE Trans. Industr. Inf. 11(3), 650–662 (2015)

    Article  Google Scholar 

  33. Rausand, M.: Risk Assessment: Theory, Methods, and Applications, vol. 115. Wiley, Hoboken (2013)

    Google Scholar 

  34. Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdependencies. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 8-p. IEEE (2004)

    Google Scholar 

  35. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21(6), 11–25 (2001)

    Article  Google Scholar 

  36. Roychoudhury, I., Daigle, M.J., Biswas, G., Koutsoukos, X.: Efficient simulation of hybrid systems: a hybrid bond graph approach. Simulation 87(6), 467–498 (2011)

    Article  Google Scholar 

  37. Satumtira, G., Dueñas-Osorio, L.: Synthesis of modeling and simulation methods on critical infrastructure interdependencies research. In: Gopalakrishnan, K., Peeta, S. (eds.) Sustainable and Resilient Critical Infrastructure Systems, pp. 1–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11405-2_1

    Chapter  Google Scholar 

  38. Tagarev, T., Stoianov, N., Sharkov, G.: Integrative approach to understand vulnerabilities and enhance the security of cyber-bio-cognitive-physical systems. In: European Conference on Cyber Warfare and Security, pp. 492-XIX. Academic Conferences International Limited (2019)

    Google Scholar 

  39. Tan, R.R., Aviso, K.B., Promentilla, M.A.B., Yu, K.D.S., Santos, J.R.: Input–output models of infrastructure systems. In: Input-Output Models for Sustainable Industrial Systems. LNMIE, pp. 63–74. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1873-3_5

    Chapter  Google Scholar 

  40. Thulasiraman, K., Arumugam, S., Nishizeki, T., Brandstädt, A., et al.: Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Taylor & Francis, Boca Raton (2016)

    Google Scholar 

  41. Torres, J.L.S.: Vulnerability, interdependencies and risk analysis of coupled infrastructures: power distribution network and ICT. Ph.D. thesis (2013)

    Google Scholar 

  42. Umarikar, A.C., Umanand, L.: Modelling of switching systems in bond graphs using the concept of switched power junctions. J. Franklin Inst. 342(2), 131–147 (2005)

    Article  Google Scholar 

  43. Wei, J., Kundur, D.: Biologically inspired hierarchical cyber-physical multi-agent distributed control framework for sustainable smart grids. In: Khaitan, S.K., McCalley, J.D., Liu, C.C. (eds.) Cyber Physical Systems Approach to Smart Electric Power Grid. PS, pp. 219–259. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45928-7_9

    Chapter  Google Scholar 

  44. White, M.J.: Bond graph modeling of critical infrastructures for cyber-physical security implementation. Master’s thesis, Department of Electrical and Computer Engineering, Missouri University of Science and Technology (2021)

    Google Scholar 

  45. Wolf, M., Serpanos, D.N.: Safe and Secure Cyber-Physical Systems and Internet-of-Things Systems. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25808-5

    Book  Google Scholar 

  46. Zhang, Y., Yağan, O.: Modeling and analysis of cascading failures in interdependent cyber-physical systems. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 4731–4738. IEEE (2018)

    Google Scholar 

  47. Zhu, W., Milanović, J.V.: Interdepedency modeling of cyber-physical systems using a weighted complex network approach. In: 2017 IEEE Manchester PowerTech, pp. 1–6. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Akbarzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akbarzadeh, A., Katsikas, S. (2023). Towards Comprehensive Modeling of CPSs to Discover and Study Interdependencies. In: Katsikas, S., et al. Computer Security. ESORICS 2022 International Workshops. ESORICS 2022. Lecture Notes in Computer Science, vol 13785. Springer, Cham. https://doi.org/10.1007/978-3-031-25460-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25460-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25459-8

  • Online ISBN: 978-3-031-25460-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics