Abstract
Morphological neural networks allow to learn the weights of a structuring function knowing the desired output image. However, those networks are not intrinsically robust to lighting variations in images with an optical cause, such as a change of light intensity. In this paper, we introduce a morphological neural network which possesses such a robustness to lighting variations. It is based on the recent framework of Logarithmic Mathematical Morphology (LMM), i.e. Mathematical Morphology defined with the Logarithmic Image Processing (LIP) model. This model has a LIP additive law which simulates in images a variation of the light intensity. We especially learn the structuring function of a LMM operator robust to those variations, namely: the map of LIP-additive Asplund distances. Results in images show that our neural network verifies the required property.
Supported by Lyon Informatics Federation, France, through the “FakeNets” project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aouad, T., Talbot, H.: Binary morphological neural network (2022). https://doi.org/10.48550/ARXIV.2203.12337
Barrera, J., Dougherty, E.R., Tomita, N.S.: Automatic programming of binary morphological machines by design of statistically optimal operators in the context of computational learning theory. Journal of Electronic Imaging 6(1), 54–67 (1997). https://doi.org/10.1117/12.260010
Brailean, J., Sullivan, B., Chen, C., Giger, M.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: ICASSP 1991. pp. 2957–2960 vol 4 (1991). https://doi.org/10.1109/ICASSP.1991.151023
Chaman, A., Dokmanić, I.: Truly shift-invariant convolutional neural networks. In: CVPR 2021. pp. 3772–3782 (2021). https://doi.org/10.1109/CVPR46437.2021.00377
Charisopoulos, V., Maragos, P.: Morphological perceptrons: Geometry and training algorithms. In: Lect Notes Comput Sc. vol. 10225, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_1
Davidson, J.L., Hummer, F.: Morphology neural networks: An introduction with applications. Circuits, Systems and Signal Processing 12(2), 177–210 (1993). https://doi.org/10.1007/BF01189873
Franchi, G., Fehri, A., Yao, A.: Deep morphological networks. Pattern Recognition 102, 107246 (2020). https://doi.org/10.1016/j.patcog.2020.107246
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), https://www.deeplearningbook.org
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York, NY, 2 edn. (2009). https://doi.org/10.1007/978-0-387-84858-7
Heijmans, H., Ronse, C.: The algebraic basis of mathematical morphology I. Dilations and erosions. Comput. Vision Graphics and Image Process. 50(3), 245–295 (Jun 1990). https://doi.org/10.1016/0734-189X(90)90148-O
Jourlin, M.: Chapter three - metrics based on logarithmic laws. In: Logarithmic Image Processing: Theory and Applications, Adv. Imag. Electron Phys., vol. 195, pp. 61–113. Elsevier (2016). https://doi.org/10.1016/bs.aiep.2016.04.003
Jourlin, M., Pinoli, J.: Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images. Adv. Imag. Electron Phys., vol. 115, pp. 129–196. Elsevier (2001). https://doi.org/10.1016/S1076-5670(01)80095-1
Jourlin, M.: Logarithmic Image Processing: Theory and Applications, Adv. Imag. Electron Phys., vol. 195. Elsevier (2016)
Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Signal Process. 41(2), 225–237 (1995). https://doi.org/10.1016/0165-1684(94)00102-6
Kirszenberg, A., Tochon, G., Puybareau, É., Angulo, J.: Going beyond p-convolutions to learn grayscale morphological operators. In: Lect Notes Comput Sc. vol. 12708, pp. 470–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_34
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
Masci, J., Angulo, J., Schmidhuber, J.: A learning framework for morphological operators using counter-harmonic mean. In: Lect Notes Comput Sc. vol. 7883, pp. 329–340. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_28
Mellouli, D., Hamdani, T.M., Ayed, M.B., Alimi, A.M.: Morph-CNN: A morphological convolutional neural network for image classification. In: Lect Notes Comput Sc. vol. 10635, pp. 110–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_12
Mondal, R., Dey, M.S., Chanda, B.: Image restoration by learning morphological opening-closing network. Mathematical Morphology - Theory and Applications 4(1), 87–107 (2020). https://doi.org/10.1515/mathm-2020-0103
Mondal, R., Mukherjee, S.S., Santra, S., Chanda, B.: Morphological Network: How Far Can We Go with Morphological Neurons? (2019). https://doi.org/10.48550/arxiv.1901.00109
Mondal, R., Santra, S., Chanda, B.: Dense morphological network: An universal function approximator. CoRR (2019), https://arxiv.org/abs/1901.00109
Moya-Sánchez, E.U., Xambó-Descamps, S., Sánchez Pérez, A., Salazar-Colores, S., et al.: A bio-inspired quaternion local phase CNN layer with contrast invariance and linear sensitivity to rotation angles. Pattern Recognition Letters 131, 56–62 (2020). https://doi.org/10.1016/j.patrec.2019.12.001
Nogueira, K., Chanussot, J., Mura, M.D., Santos, J.A.D.: An introduction to deep morphological networks. IEEE Access 9, 114308–114324 (2021). https://doi.org/10.1109/ACCESS.2021.3104405
Noyel, G.: Logarithmic mathematical morphology: A new framework adaptive to illumination changes. Lect Notes Comput Sc, vol. 11401, pp. 453–461. Springer (2019). https://doi.org/10.1007/978-3-030-13469-3_53
Noyel, G.: Morphological and logarithmic analysis of large image databases. Dissertation of accreditation to supervise research, Université de Reims Champagne-Ardenne, France (Jun 2021), https://tel.archives-ouvertes.fr/tel-03343079
Noyel, G., Jourlin, M.: Double-sided probing by map of Asplund’s distances using logarithmic image processing in the framework of mathematical morphology. Lect Notes Comput Sc, vol. 10225, pp. 408–420. Springer (2017). https://doi.org/10.1007/978-3-319-57240-6_33
Noyel, G., Jourlin, M.: Functional asplund metrics for pattern matching, robust to variable lighting conditions. Image Anal. Stereol. 39(2), 53–71 (2020). https://doi.org/10.5566/ias.2292
Pinoli, J.C.: Metrics, scalar product and correlation adapted to logarithmic images. Acta Stereologica 11(2), 157–168 (1992), https://popups.uliege.be:443/0351-580x/index.php?id=1901
Saeedan, F., Weber, N., Goesele, M., Roth, S.: Detail-preserving pooling in deep networks. In: CVPR 2018. pp. 9108–9116 (2018). https://doi.org/10.1109/CVPR.2018.00949
Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic, Orlando, FL, USA (1982)
Shen, Y., Zhong, X., Shih, F.Y.: Deep morphological neural networks. CoRR (2019), https://arxiv.org/abs/1909.01532
Velasco-Forero, S., Pagès, R., Angulo, J.: Learnable empirical mode decomposition based on mathematical morphology. SIAM J. Imaging Sci. 15(1), 23–44 (2022). https://doi.org/10.1137/21M1417867
Zalando: Fashion MNIST. https://www.kaggle.com/datasets/zalando-research/fashionmnist (2017)
Zhang, W., Zhao, X., Morvan, J.M., Chen, L.: Improving shadow suppression for illumination robust face recognition. IEEE T Pattern Anal 41(3), 611–624 (2019). https://doi.org/10.1109/TPAMI.2018.2803179
Zhang, Y., Blusseau, S., Velasco-Forero, S., Bloch, I., Angulo, J.: Max-plus operators applied to filter selection and model pruning in neural networks. In: Lect Notes Comput Sc. vol. 11564, pp. 310–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20867-7_24
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Noyel, G., Barbier-Renard, E., Jourlin, M., Fournel, T. (2022). Logarithmic Morphological Neural Nets Robust to Lighting Variations. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)