Skip to main content

Shape Prior Based Myocardial Segmentation with Anatomically Motivated Pose Model

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

We extend the shape-prior based geometric approach developed for myocardial segmentation in cardiac CT imagery by incorporating minimal user input in the form of anatomical constraints to guide the segmentation process resulting in significantly improved results. The shape-prior based geometric approach involves estimating coefficients of a low-dimensional principal component analysis based shape representation along with a set of rigid 3D pose parameters of three separate surfaces corresponding to left (LV)/right (RV) ventricles and Epicardium (Epi) by optimizing a novel Chan-Vese like image appearance model with gradient descent. We enhance this framework by allowing experienced clinical users to identify the centers of the three anatomies in apical slices and a common anatomical cardiac base slice. We integrate this minimal user input as anatomical constraints in the segmentation process by replacing the rigid 3D pose model with a novel blended model which incorporates rigidity only within 2D slices while incorporating non-rigid effects of shear and torsion along the third (axial) dimension. With this new formulation we achieved significantly improved segmentation results in terms of average symmetric surface-to-surface distances (mm): LV 1.05 ± 0.27; RV 1.7 ± 0.40; Epi 1.22 ± 0.56 compared to LV 2.3 ± 0.50; RV 1.13 ± 0.21; Epi 3.3 ± 0.50 with rigid 3D pose model.

This work was supported by the National Institutes of Health (NIH) grant number R01-HL-143350.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 69.99
Price excludes VAT (USA)
Softcover Book
USD 89.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These penalties are experimentally determined for each case. Typically, in some cases RV and Myo penalties need to be tuned to allow proper segmentation of RV in extreme poor contrast cases while LV (\(=0.5\)) and BG (\(=1.0\)) penalties remain fixed.

References

  1. van Assen, H.C., Danilouchkine, M.G., Dirksen, M.S., et al.: A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR. IEEE Trans. Inf. Technol. Biomed. 12(5), 595–605 (2008)

    Article  Google Scholar 

  2. van Assen, H.C., Danilouchkine, M.G., Frangi, F.F., et al.: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med. Image Anal. 10(2), 286–303 (2006)

    Article  Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502

    Article  Google Scholar 

  4. Blankstein, R., Di Carli, M.F.: Integration of coronary anatomy and myocardial perfusion imaging. Nat. Rev. Cardiol. 7(4), 226–236 (2010). https://doi.org/10.1038/nrcardio.2010.15

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(61), 61–79 (1997)

    Article  Google Scholar 

  6. CDC: Heart disease: Scope and impact (2015). http://www.theheartfoundation.org/heart-disease-facts/heart-disease-statistics/

  7. Chan, T., Vese, L.: An active contour model without edges. In: International Conference on Scale-Space Theories in Computer Vision, pp. 141–151 (1999)

    Google Scholar 

  8. Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford-shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 161–168 (2001)

    Google Scholar 

  9. Chen, C., Qin, C., Qiu, H., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7 (2020). https://doi.org/10.3389/fcvm.2020.00025

  10. Chen, Y., Thiruvenkadam, S., Huang, F., et al.: On the incorporation of shape priors into geometric active contours. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 145–152 (2001)

    Google Scholar 

  11. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Recognit. Mach. Intell. 23(6), 681–685 (2001)

    Google Scholar 

  12. Cootes, T., Taylor, C.: Smart snakes. In: Proceedings of British Machine Vision Conference, pp. 266–275 (1992)

    Google Scholar 

  13. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054760

    Chapter  Google Scholar 

  14. Cootes, T., Taylor, C., Cooper, C., et al.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(9), 38–59 (1995)

    Article  Google Scholar 

  15. Dahiya, N., Yezzi, A., Piccinelli, M., et al.: Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7(5–6), 690–706 (2019). https://doi.org/10.1080/21681163.2019.1583607

    Article  Google Scholar 

  16. Dahiya, N., Yezzi, A., Piccinelli, M., Garcia, E.: Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery. In: Tavares, J.M.R.S., Natal Jorge, R.M. (eds.) ECCOMAS 2017. LNCVB, vol. 27, pp. 1115–1124. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68195-5_123

    Chapter  Google Scholar 

  17. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  18. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  19. Mitchell, S.C., Lelieveldt, B., Van Der Geest, et al.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans. Med. Imaging 20(5), 415–423 (2001)

    Google Scholar 

  20. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(6), 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  21. Piccinelli, M., et al.: Diagnostic performance of the quantification of myocardium at risk from MPI SPECT/CTA 2G fusion for detecting obstructive coronary disease: a multicenter trial. J. Nucl. Cardiol. 25(4), 1376–1386 (2017). https://doi.org/10.1007/s12350-017-0819-x

    Article  Google Scholar 

  22. Rizvi, A., Han, D., Danad, I., et al.: Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with stand-alone coronary computed tomography angiography: a meta-analysis. JACC Cardiovasc. Imaging 11(4), 589–599 (2018)

    Article  Google Scholar 

  23. Shahzad, R., Bos, D., Budde, R.P.J., et al.: Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans. Phys. Med. Biol. 62(9), 3798 (2017)

    Article  Google Scholar 

  24. Tsai, A., Yezzi, A., Wells, W., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22, 137–154 (2003)

    Article  Google Scholar 

  25. Vikram, A., Ganapathy, B., Abufadel, A., et al.: A regions of confidence based approach to enhance segmentation with shape priors. In: Proceedings of the of SPIE-IS &T Electronic Imaging, SPIE, pp. 7533–12 (2010). https://doi.org/10.1117/12.850888

  26. Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45729-1_38

    Chapter  MATH  Google Scholar 

  27. Yezzi, A., Kichenassamy, S., Kumar, et al.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16, 199–209 (1997)

    Google Scholar 

  28. Yezzi, A., Dahiya, N.: Shape adaptive accelerated parameter optimization. In: 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 1–4 (2018). https://doi.org/10.1109/SSIAI.2018.8470380

  29. Zhuang, X., Li, L., Payer, C., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019). https://doi.org/10.1016/j.media.2019.101537

    Article  Google Scholar 

  30. Bignardi, S., Dahiya, N., Comelli, A., et al.: Combining convolutional neural networks and anatomical shape-based priors for cardiac segmentation. To appear. In: AIRCAD 2022 1st International Workshop on Artificial Intelligence and Radiomics in Computer-Aided Diagnosis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Dahiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahiya, N., Piccinelli, M., Garcia, E., Yezzi, A. (2022). Shape Prior Based Myocardial Segmentation with Anatomically Motivated Pose Model. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics