Skip to main content

Using Machine Learning to Quantify the Robustness of Network Controllability

  • Conference paper
  • First Online:
Machine Learning for Networking (MLN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12629))

Included in the following conference series:

Abstract

This paper presents machine learning based approximations for the minimum number of driver nodes needed for structural controllability of networks under link-based random and targeted attacks. We compare our approximations with existing analytical approximations and show that our machine learning based approximations significantly outperform the existing closed-form analytical approximations in case of both synthetic and real-world networks. Apart from targeted attacks based upon the removal of so-called critical links, we also propose analytical approximations for out-in degree-based attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, P., Kooij, R. E., He, Z., Van Mieghem, P.: Quantifying the robustness of network controllability. In 2019 4th International Conference on System Reliability and Safety (ICSRS), pp. 66–76. IEEE, November 2019

    Google Scholar 

  2. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Article  Google Scholar 

  3. Kalman, R.E.: Mathematical description of linear dynamical systems. J. SIAM Ser. A Control 1(2), 152–192 (1963)

    MathSciNet  MATH  Google Scholar 

  4. Dhiman, A.K.: Measuring the robustness of network controllability. M.Sc. Thesis, Delft University of Technology (2020)

    Google Scholar 

  5. Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.: Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS ONE 7(6), e38398 (2012)

    Article  Google Scholar 

  6. Socievole, A., De Rango, F., Scoglio, C., Van Mieghem, P.: Assessing network robustness under SIS epidemics: the relationship between epidemic threshold and viral conductance. Comput. Netw. 103, 196–206 (2016)

    Article  Google Scholar 

  7. Trajanovski, S., Martín-Hernández, J., Winterbach, W., Van Mieghem, P.: Robustness envelopes of networks. J. Complex Netw. 1(1), 44–62 (2013)

    Article  Google Scholar 

  8. Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9), 221 (2014). https://doi.org/10.1140/epjb/e2014-50276-0

    Article  Google Scholar 

  9. Koç, Y., Warnier, M., Van Mieghem, P., Kooij, R.E., Brazier, F.M.: The impact of the topology on cascading failures in a power grid model. Phys. A Stat. Mech. Appl. 402, 169–179 (2014)

    Article  MathSciNet  Google Scholar 

  10. Lin, C.T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974)

    Article  MathSciNet  Google Scholar 

  11. Hopcroft, J.E., Karp, R.M.: An n\(\hat{}\)5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  12. Nie, S., Wang, X., Zhang, H., Li, Q., Wang, B.: Robustness of controllability for networks based on edge-attack. PloS One 9(2), e89066 (2014)

    Article  Google Scholar 

  13. Pu, C.L., Pei, W.J., Michaelson, A.: Robustness analysis of network controllability. Physica A Stat. Mech. Appl. 391(18), 4420–4425 (2012)

    Article  Google Scholar 

  14. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

    Article  Google Scholar 

  15. Himsolt, M.: GML: a portable graph file format, p. 35. Technical report 94030, Universitat Passau (1997)

    Google Scholar 

  16. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_59

    Chapter  Google Scholar 

  17. NetworkX. Network analysis in python. https://networkx.github.io/

  18. Tirpak, T.M.: Telecommunication network resource management based on social network characteristics. U.S. Patent Application No. 12/463,445 (2010)

    Google Scholar 

  19. Harary, F.: The determinant of the adjacency matrix of a graph. SIAM Rev. 4(3), 202–210 (1962)

    Article  MathSciNet  Google Scholar 

  20. van der Hofstad, R.: Random graphs models for complex networks, and the brain. Complex. Sci. 1, 199–246 (2019)

    Article  MathSciNet  Google Scholar 

  21. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  22. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  23. Barabási, A.L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Phys. A Stat. Mech. Appl. 299(3–4), 559–564 (2001)

    Article  Google Scholar 

  24. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626 (2000)

    Article  Google Scholar 

  25. Cetinay, H., Devriendt, K., Van Mieghem, P.: Nodal vulnerability to targeted attacks in power grids. Appl. Netw. Sci. 3(1), 34 (2018)

    Article  Google Scholar 

  26. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)

    Article  Google Scholar 

  27. Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83(6), 065101 (2011)

    Article  Google Scholar 

  28. Mengiste, S.A., Aertsen, A., Kumar, A.: Effect of edge pruning on structural controllability and observability of complex networks. Sci. Rep. 5(1), 1–14 (2015)

    Article  Google Scholar 

  29. Van Mieghem, P., et al.: A framework for computing topological network robustness. Delft University of Technology, Report 20101218 (2010)

    Google Scholar 

  30. Lou, Y., He, Y., Wang, L., Chen, G.: Predicting network controllability robustness: a convolutional neural network approach. IEEE Trans. Cybern. 2, 1–12 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhiman, A., Sun, P., Kooij, R. (2021). Using Machine Learning to Quantify the Robustness of Network Controllability. In: Renault, É., Boumerdassi, S., Mühlethaler, P. (eds) Machine Learning for Networking. MLN 2020. Lecture Notes in Computer Science(), vol 12629. Springer, Cham. https://doi.org/10.1007/978-3-030-70866-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70866-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70865-8

  • Online ISBN: 978-3-030-70866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics