Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 1;122(8):086402.
doi: 10.1103/PhysRevLett.122.086402.

Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers

Affiliations

Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers

Fengcheng Wu et al. Phys Rev Lett. .

Abstract

We show that moiré bands of twisted homobilayers can be topologically nontrivial, and illustrate the tendency by studying valence band states in ±K valleys of twisted bilayer transition metal dichalcogenides, in particular, bilayer MoTe_{2}. Because of the large spin-orbit splitting at the monolayer valence band maxima, the low energy valence states of the twisted bilayer MoTe_{2} at the +K (-K) valley can be described using a two-band model with a layer-pseudospin magnetic field Δ(r) that has the moiré period. We show that Δ(r) has a topologically nontrivial skyrmion lattice texture in real space, and that the topmost moiré valence bands provide a realization of the Kane-Mele quantum spin-Hall model, i.e., the two-dimensional time-reversal-invariant topological insulator. Because the bands narrow at small twist angles, a rich set of broken symmetry insulating states can occur at integer numbers of electrons per moiré cell.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources