Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 15.
doi: 10.1021/acs.jafc.4c08399. Online ahead of print.

Acid Resistance Engineering of Endoglucanase for the Degradation of Wine Lees

Affiliations

Acid Resistance Engineering of Endoglucanase for the Degradation of Wine Lees

Ruiyang Hou et al. J Agric Food Chem. .

Abstract

Wine lees is a low value biomass resource rich in cellulose, with great potential for producing organic fertilizers and chemicals. However, the high acidity of wine lees limits the catalytic efficiency of the conversion tool endoglucanase. Here, we expressed endoglucanase tCel5A from Trichoderma reesei in Pichia pastoris, and the combination of promoter AOX1 and signal peptide SUC2 resulted in a highly active expression of 4632.81 U/mg. Subsequently, the catalytic center design and surface charge modification strategy resulted in mutants T88H/W255H and S45D/T55D/T59D exhibiting catalytic activity twice and three times higher than WT at pH 3.0, respectively. Finally, when the solid-liquid ratio was 1:15 (w/v), the degradation rate of wine lees was nearly double that of WT. The degradation products contained a variety of industrial and pharmaceutical raw components, including the antioxidant and anticonvulsant isopiperolein B. This study accelerates the green and sustainable management of wine lees.

Keywords: LC-MS; Rosetta supercharging; acid resistance; endoglucanase; molecule dynamics simulation; wine lees degradation.

PubMed Disclaimer