Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes
- PMID: 31858682
- DOI: 10.1111/jam.14557
Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes
Abstract
In an agro-ecosystem, industrially produced nitrogenous fertilizers are the principal sources of nitrogen for plant growth; unfortunately these also serve as the leading sources of pollution. Hence, it becomes imperative to find pollution-free methods of providing nitrogen to crop plants. A diverse group of free-living, plant associative and symbiotic prokaryotes are able to perform biological nitrogen fixation (BNF). BNF is a two component process involving the nitrogen fixing diazotrophs and the host plant. Symbiotic nitrogen fixation is most efficient as it can fix nitrogen inside the nodule formed on the roots of the plant; delivering nitrogen directly to the host. However, most of the important crop plants are nonleguminous and are unable to form symbiotic associations. In this context, the plant associative and endophytic diazotrophs assume importance. BNF in nonlegumes can be encouraged either through the transfer of BNF traits from legumes or by elevating the nitrogen fixing capacity of the associative and endophytic diazotrophs. In this review we discuss mainly the microbiological strategies which may be used in nonleguminous crops for enhancement of BNF.
Keywords: biological nitrogen fixation; diazotroph; endophyte; microbiome; nonlegumes.
© 2019 The Society for Applied Microbiology.
Similar articles
-
Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria.J Exp Bot. 2014 Oct;65(19):5631-42. doi: 10.1093/jxb/eru319. Epub 2014 Aug 11. J Exp Bot. 2014. PMID: 25114015 Review.
-
Biological nitrogen fixation in non-legume plants.Ann Bot. 2013 May;111(5):743-67. doi: 10.1093/aob/mct048. Epub 2013 Mar 10. Ann Bot. 2013. PMID: 23478942 Free PMC article. Review.
-
Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots.J Exp Bot. 2017 Apr 1;68(8):1905-1918. doi: 10.1093/jxb/erw387. J Exp Bot. 2017. PMID: 27756807 Review.
-
Current Progress in Nitrogen Fixing Plants and Microbiome Research.Plants (Basel). 2020 Jan 13;9(1):97. doi: 10.3390/plants9010097. Plants (Basel). 2020. PMID: 31940996 Free PMC article. Review.
-
Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives.Plant Commun. 2023 Mar 13;4(2):100499. doi: 10.1016/j.xplc.2022.100499. Epub 2022 Nov 28. Plant Commun. 2023. PMID: 36447432 Free PMC article. Review.
Cited by
-
Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture.Indian J Microbiol. 2024 Jun;64(2):343-366. doi: 10.1007/s12088-024-01225-6. Epub 2024 Mar 5. Indian J Microbiol. 2024. PMID: 39011025 Review.
-
Seed-Coat Pigmentation Plays a Crucial Role in Partner Selection and N2 Fixation in Legume-Root-Microbe Associations in African Soils.Plants (Basel). 2024 May 25;13(11):1464. doi: 10.3390/plants13111464. Plants (Basel). 2024. PMID: 38891273 Free PMC article. Review.
-
Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution.Biodes Res. 2023 Feb 7;5:0005. doi: 10.34133/bdr.0005. eCollection 2023. Biodes Res. 2023. PMID: 37849466 Free PMC article. Review.
-
Impact of Plant-Beneficial Bacterial Inocula on the Resident Bacteriome: Current Knowledge and Future Perspectives.Microorganisms. 2022 Dec 13;10(12):2462. doi: 10.3390/microorganisms10122462. Microorganisms. 2022. PMID: 36557714 Free PMC article. Review.
-
Plant-endophyte mediated improvement in physiological and bio-protective abilities of marigold (Tagetes patula).Front Plant Sci. 2022 Sep 9;13:993130. doi: 10.3389/fpls.2022.993130. eCollection 2022. Front Plant Sci. 2022. PMID: 36161029 Free PMC article.
References
-
- Allen, R.S., Tilbrook, K., Warden, A.C., Campbell, P.C., Rolland, V., Singh, S.P. and Wood, C.C. (2017) Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front Plant Sci 8, 287.
-
- Amann, R., Glöckner, F.O. and Neef, A. (1997) Modern methods in subsurface microbiology: in situ identification of microorganism with nucleic acid probes. FEMS Microbiol Rev 20, 191-200.
-
- Amicucci, M.J., Galermo, A.G., Guerrero, A., Treves, G., Nandita, E., Kailemia, M.J., Higdon, S.M., Pozzo, T., et al. (2019) Strategy for structural elucidation of polysaccharides: elucidation of a maize mucilage that harbors diazotrophic bacteria. Anal Chem 91, 7254-7265.
-
- Arrieta, J.G., Sotolongo, M., Menéndez, C., Alfonso, D., Trujillo, L.E., Soto, M., Ramirez, R. and Hernández, L. (2004) A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus. J Bacteriol 186, 5031-5039.
-
- Bageshwar, U.K., Srivastava, M., Pardha-Saradhi, P., Paul, S., Gothandapani, S., Jaat, R.S., Shankar, P., Yadav, R., et al. (2017) An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Appl Environ Microbiol 83, e00590-17.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources