Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Feb 1;233(3):893–898. doi: 10.1042/bj2330893

An investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase.

J Sutherland, C Greenwood, J Peterson, A J Thomson
PMCID: PMC1153113  PMID: 3010946

Abstract

The low-temperature e.p.r. and m.c.d. (magnetic-circular-dichroism) spectra of Pseudomonas aeruginosa nitrite reductase, together with those of its partially and fully cyanide-bound derivatives, were investigated. The m.c.d. spectra in the range 600-2000 nm indicate that the native axial ligands to haem c are histidine and methionine, and furthermore that it is the methionine ligand that must be displaced before cyanide binding at this haem. The m.c.d. spectra in the range 1000-2000 nm contain no charge-transfer bands arising from low-spin ferric haem d1, a chlorin. New optical transitions in the region 700-850 nm were found for the cyanide adduct of haem d1. The g-values of haem d1 in the native enzyme are 2.51, 2.43 and 1.71, suggesting co-ordination by two histidine ligands in the oxidized state. There is clear evidence in the e.p.r. data of an interaction between the c and d1 haem groups. This is not apparent in the optical spectra. The results are interpreted in terms of haem groups that are remote from each other, their interaction being mediated through protein conformational changes. The possible implications of this in relation to reduction processes catalysed by the enzyme are considered.

Full text

PDF
893

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber D., Parr S. R., Greenwood C. The oxidation of Pseudomonas cytochrome c-551 oxidase by potassium ferricyanide. Biochem J. 1978 Aug 1;173(2):681–690. doi: 10.1042/bj1730681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber D., Parr S. R., Greenwood C. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide. Biochem J. 1978 Oct 1;175(1):239–249. doi: 10.1042/bj1750239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C. K. On the structure of heme d1. An isobacteriochlorin derivative as the prosthetic group of dissimilatory nitrite reductase? J Biol Chem. 1985 Aug 15;260(17):9520–9522. [PubMed] [Google Scholar]
  4. Ching Y., Ondrias M. R., Rousseau D. L., Muhoberac B. B., Wharton D. C. Resonance Raman spectra of heme c and heme d1 in Pseudomonas cytochrome oxidase. FEBS Lett. 1982 Feb 22;138(2):239–244. doi: 10.1016/0014-5793(82)80451-1. [DOI] [PubMed] [Google Scholar]
  5. Eglinton D. G., Gadsby P. M., Sievers G., Peterson J., Thomson A. J. A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives. Biochim Biophys Acta. 1983 Feb 15;742(3):648–658. doi: 10.1016/0167-4838(83)90284-4. [DOI] [PubMed] [Google Scholar]
  6. Eglinton D. G., Johnson M. K., Thomson A. J., Gooding P. E., Greenwood C. Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. Biochem J. 1980 Nov 1;191(2):319–331. doi: 10.1042/bj1910319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foote N., Peterson J., Gadsby P. M., Greenwood C., Thomson A. J. A study of the oxidized form of Pseudomonas aeruginosa cytochrome c-551 peroxidase with the use of magnetic circular dichroism. Biochem J. 1984 Oct 15;223(2):369–378. doi: 10.1042/bj2230369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenwood C., Barber D., Parr S. R., Antonini E., Brunori M., Colosimo A. The reaction of Pseudomonas aeruginosa cytochrome c-551 oxidase with oxygen. Biochem J. 1978 Jul 1;173(1):11–17. doi: 10.1042/bj1730011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gudat J. C., Singh J., Wharton D. C. Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties. Biochim Biophys Acta. 1973 Feb 22;292(2):376–390. doi: 10.1016/0005-2728(73)90044-3. [DOI] [PubMed] [Google Scholar]
  10. HORIO T., HIGASHI T., MATSUBARA H., KUSAI K., NAKAI M., OKUNUKI K. High purification and properties of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1958 Aug;29(2):297–302. doi: 10.1016/0006-3002(58)90188-4. [DOI] [PubMed] [Google Scholar]
  11. Johnson M. K., Thomson A. J., Walsh T. A., Barber D., Greenwood C. Electron paramagnetic resonance studies on Pseudomonas nitrosyl nitrite reductase. Evidence for multiple species in the electron paramagnetic resonance spectra of nitrosyl haemoproteins. Biochem J. 1980 Aug 1;189(2):285–294. doi: 10.1042/bj1890285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuronen T., Saraste M., Ellfork N. The subunit structure of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1975 May 30;393(1):48–54. doi: 10.1016/0005-2795(75)90215-9. [DOI] [PubMed] [Google Scholar]
  13. LeGall J., Payne W. J., Morgan T. V., DerVartanian D. On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions. Biochem Biophys Res Commun. 1979 Mar 30;87(2):355–362. doi: 10.1016/0006-291x(79)91804-7. [DOI] [PubMed] [Google Scholar]
  14. Moore G. R., Williams R. J., Peterson J., Thomson A. J., Mathews F. S. A spectroscopic investigation of the structure and redox properties of Escherichia coli cytochrome b-562. Biochim Biophys Acta. 1985 May 20;829(1):83–96. doi: 10.1016/0167-4838(85)90071-8. [DOI] [PubMed] [Google Scholar]
  15. Muhoberac B. B., Wharton D. C. Electron paramagnetic resonance study of the interaction of some anionic ligands with oxidized Pseudomonas cytochrome oxidase. J Biol Chem. 1983 Mar 10;258(5):3019–3027. [PubMed] [Google Scholar]
  16. Orii Y., Shimada H., Nozawa T., Hatano M. The interaction between the heme c and heme d moieties of Pseudomonas nitrite reductase as revealed by magnetic and natural circular dichroism studies. Biochem Biophys Res Commun. 1977 Jun 20;76(4):983–988. doi: 10.1016/0006-291x(77)90952-4. [DOI] [PubMed] [Google Scholar]
  17. Parr S. R., Barber D., Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochem J. 1976 Aug 1;157(2):423–430. doi: 10.1042/bj1570423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parr S. R., Barber D., Greenwood C., Brunori M. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa. Biochem J. 1977 Nov 1;167(2):447–455. doi: 10.1042/bj1670447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parr S. R., Wilson M. T., Greenwood C. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide. Biochem J. 1975 Oct;151(1):51–59. doi: 10.1042/bj1510051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rawlings J., Stephens P. J., Nafie L. A., Kamen M. D. Near-infrared magnetic circular dichroism of cytochrome c'. Biochemistry. 1977 Apr 19;16(8):1725–1729. doi: 10.1021/bi00627a032. [DOI] [PubMed] [Google Scholar]
  21. Silvestrini M. C., Colosimo A., Brunori M., Walsh T. A., Barber D., Greenwood C. A re-evaluation of some basic structural and functional properties of Pseudomonas cytochrome oxidase. Biochem J. 1979 Dec 1;183(3):701–709. doi: 10.1042/bj1830701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silvestrini M. C., Tordi M. G., Colosimo A., Antonini E., Brunori M. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase. Biochem J. 1982 May 1;203(2):445–451. doi: 10.1042/bj2030445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thomson A. J., Johnson M. K. Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem J. 1980 Nov 1;191(2):411–420. doi: 10.1042/bj1910411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Timkovich R., Cork M. S., Taylor P. V. Proposed structure for the noncovalently associated heme prosthetic group of dissimilatory nitrite reductases. Identification of substituents. J Biol Chem. 1984 Feb 10;259(3):1577–1585. [PubMed] [Google Scholar]
  25. Vickery L. E., Palmer G., Wharton D. C. Heme c - heme d1 interaction in Pseudomonas cytochrome oxidase (nitrite reductase): a reappraisal of the spectroscopic evidence. Biochem Biophys Res Commun. 1978 Jan 30;80(2):458–463. doi: 10.1016/0006-291x(78)90699-x. [DOI] [PubMed] [Google Scholar]
  26. Walsh T. A., Johnson M. K., Barber D., Thomson A. J., Greenwood C. Studies on heme d1 extracted from Pseudomonas aeruginosa nitrite reductase. J Inorg Biochem. 1981 Feb;14(1):15–31. doi: 10.1016/s0162-0134(00)80011-2. [DOI] [PubMed] [Google Scholar]
  27. Walsh T. A., Johnson M. K., Greenwood C., Barber D., Springall J. P., Thomson A. J. Some magnetic properties of Pseudomonas cytochrome oxidase. Biochem J. 1979 Jan 1;177(1):29–39. doi: 10.1042/bj1770029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walsh T. A., Johnson M. K., Thomson A. J., Barber D., Greenwood C. The characterization and magnetic properties of the azide and imidazole derivatives of Pseudomonas nitrite reductase. J Inorg Biochem. 1981 Feb;14(1):1–14. doi: 10.1016/s0162-0134(00)80010-0. [DOI] [PubMed] [Google Scholar]
  29. YAMANAKA T., KIJIMOTO S., OKUNUKI K. Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa. J Biochem. 1963 May;53:416–421. doi: 10.1093/oxfordjournals.jbchem.a127716. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES