Skip to main content
Log in

The Scope of Gödel’s First Incompleteness Theorem

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamowicz Z., Bigorajska T.: Existentially closed structures and Gödel’s second incompleteness theorem. J. Symb. Log. 66, 349��356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, A.R., Belnap, N.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)

  3. Anderson, A.R., Belnap, N., Dunn, M.J.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)

  4. Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 13, pp. 189–360. Springer, Dordrecht (2005)

  5. Awodey S.: An answer to Hellman’s question: does category theory provide a framework for mathematical structuralism. Philosophia Mathematica 12, 54–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Awodey, S., Coquand, Th., Voevodsky, V. et al.: Homotopy Type Theory: Univalent Foundations of Mathematics. Univalent Foundations Program. Institute for Advanced Study, Princeton (2013)

  7. Awodey S., Reck E.H.: Completeness and categoricity. Part I: nineteenth-century axiomatics to twentieth-century metalogic. Hist. Philos. Log. 23, 1–30 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Barwise, J. (ed.): Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90. North-Holland, Amsterdam (1977)

  9. Bell, J.L.: Incompleteness in a general setting. Bull. Symb. Log. 13, 21–30 (2007) [14, 122 (2008) (corrections)]

  10. Bernays P.: A system of axiomatic set theory—part I. J. Symb. Log. 2, 65–77 (1937)

    Google Scholar 

  11. Beklemishev, L.D.: Gödel incompleteness theorems and the limits of their applicability. I. Russ. Math. Surv. 65, 857–899 (2010) [First Russian Uspekhi Matematicheskikh Nauk 65, 61–106 (2010)]

  12. Boolos, G.: A new proof of Gödel’s incompleteness theorem. In: [14], pp. 383–388 [First Notices of the American Mathematical Association, vol. 36, pp. 388–390, 676 (1989)]

  13. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993) [Rev. of The Unprovability of Consistency. An Essay in Modal Logic. Cambridge University Press, Cambridge (1979)]

  14. Boolos, G.: Logic, Logic, Logic, with notes by John P. Burgess ed. by Richard Jeffrey. Harvard University Press, Cambridge (1998)

  15. Boolos, G., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cambridge University Press, Cambridge (2002) [1st edn, 1974]

  16. Bovykin, A.: Several proofs of PA-unprovability. In: Blass, A., Zhang, Y. (eds.) Logic and its Applications. International Conference of Logic and its Applications in Algebra and Geometry, April 11–13, 2003. Contemporary Mathematics, vol. 380, pp. 29–43. AMS, Providence (2005)

  17. Bovykin, A.: Brief introduction to unprovability. In: Copper, B., et al. (eds.) Logic Colloquium ’06. Lecture Notes in Logic, vol. 32, pp. 38–64. Cambridge University Press, Cambridge (2009)

  18. Buechner J.: Are the Gödel incompleteness theorems limitative results for the neurosciences? . J. Biol. Phys. 36, 23–44 (2010)

    Article  Google Scholar 

  19. Buldt, B.: Philosophische Implikationen der Gödelschen Sätze? Ein kritischer Bericht. In: Buldt, B., et al. (eds.) Kurt Gödel. Wahrheit und Beweisbarkeit. Bd. 2: Kompendium zum Werk, pp. 395–438. Hölder-Pichler-Tempsky, Vienna (2002)

  20. Buldt, B.: On RC 102-43-14. In: Awodey, S., Klein, C. (eds.) Carnap: From Jena to L.A., pp. 225–246. Open Court, Chicago (2004)

  21. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986)

  22. Buss, S.R.: Bounded arithmetic and propositional proof complexity. In: Schwichtenberg, H. (ed.) Logic of Computation, pp. 67–122. Springer, Berlin (1997)

  23. Buss, S.R.: First-order proof theory of arithmetic. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 79–147. North-Holland, Amsterdam (1998)

  24. Calude, C.S., Jürgensen, H.: Is complexity a source of incompleteness? Adv. Appl. Math. 35, 1–15 (2005)

  25. Carnap, R.: Logische Syntax der Sprache. Schriften zur wissenschaftlichen Weltaufffassung, vol. 8. Springer, Vienna (1934) (2nd edn, 1968)

  26. Carnap, R.: Autobiography. In: Schilpp, P.A. (ed.) The Philosophy of Rudolf Carnap. Library of Living Philosophers, vol. XI, pp. 1–84. Open Court, Chicago (1963)

  27. Chaitin G.: A theory of program size formally identical to information theory. J. ACM 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chaitin, G.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

  29. Chvalovský , Chvalovský : On the independence of axioms in BL and MTL. Fuzzy Sets Syst. 197, 123–129 (2012)

    Article  MATH  Google Scholar 

  30. Collins G.E., Halpern J.D.: On the interpretability of arithmetic in set theory. Notre Dame J. Form. Log. 11, 477–483 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Corcoran J., Frank W., Maloney M.: String theory. J. Symb. Log. 39, 635–637 (1974)

    Article  MathSciNet  Google Scholar 

  32. da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Gabbay, D.M., Thagard, P., Woods, J. (eds.) Handbook of the Philosophy of Science [Jacquette, D. (ed.) Philosophy of Logic, vol. 5], pp. 655–781. Elsevier, Amsterdam (2006)

  33. Davis, M. (ed.): The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions. Raven P, Hewlett (1965)

  34. Davis, M., Matiyasevich, Y., Robinson, J.: Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solution. In: Browder, F.E. (ed.) Mathematical Developments Arising From Hilbert’s Problems. Proceedings of Symposia in Pure Mathematics, vol. 28, pp. 223–378 AMS, Providence (1976)

  35. Davis M., Putnam H., Robinson J.: The decision problem for exponential Diophantine equations. Ann. Math. 74, 425–436 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dawes, A.M., Florence, J.B.: Independent Gödel sentences and independent sets. J. Symb. Log. 40, 159–166 (1975)

  37. Dedekind, R.: Was sind und was sollen die Zahlen. In: [39], Bd. 3, pp. 335–390 [First Vieweg, Braunschweig (1888); engl. in [38], pp. 31–115]

  38. Dedekind, R.: Essays on the Theory of Number. Open Court, Chicago (1901) [Transl. by Wooster Woodruff Beman]

  39. Dedekind, R.: In: Fricke, R., Noether, E., Ore, Ö. (eds.) Gesammelte mathematische Werke, vols. 1–3. Vieweg, Braunschweig (1930–1932)

  40. Ehrenfeucht, A.: Separable theories. In: Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 14, pp. 17–19 (1961)

  41. Feferman S.: Transfinite recursive progressions of axiomatic theories. J. Symb. Log. 27, 259–316 (1962)

    Article  MathSciNet  Google Scholar 

  42. Feferman, S.: Turing in the land of O(z). In: Herkin, R. (ed.) The Universal Turing Machine. A Half-Century Survey, pp. 113–147. Kammerer & Unverzagt, Hamburg (1988)

  43. Feferman S.: Reflecting on incompleteness. J. Symb. Log. 56, 1–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Feferman, S., Solovay, R.M.: Introductory Note to 1972a. Remark 2 in [69], pp. 287–292

  45. Feferman S., Spector C.: Incompleteness along paths in progressions of theories. J. Symb. Log. 27, 383–390 (1962)

    Article  MathSciNet  Google Scholar 

  46. Franzén T.: Transfinite progressions: a second look at completeness. Bull. Symb. Log. 10, 367–389 (2004)

    Article  MATH  Google Scholar 

  47. Franzén, T.: Gödel’s Theorem: An Incomplete Guide to its Use and Abuse. A K Peters, Wellesley (2005)

  48. Friedman, H.: Concrete incompleteness from EFA through large cardinals (slides, 05/10/2010). http://www.math.ohio-state.edu/~friedman/

  49. Friedman, H.: My forty years on his shoulders. In: Baaz, M., et al. (eds.) Kurt Gödel and the Foundations of Mathematics: Horizons of Truth, pp. 399–432. Cambridge University Press, Cambridge (2011)

  50. Friedman, H., Meyer, R.K.: Whither relevant arithmetic? J. Symb. Log. 57, 824–831 (1992)

  51. Friedman, H., Visser, A.: When Bi-interpretability Implies Synonymy, Logic Group Preprint Series, vol. 320. Utrecht (2014)

  52. Ganea M.: Arithmetic on semigroups. J. Symb. Log. 74, 265–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Givant, S., Tarski, A.: Peano arithmetic and the Zermelo-like theory of sets with finite ranks (abstract 77T-E51). Notices of the American Mathematical Society, vol. 24, A-437 (1977)

  54. Gödel, K.: Über die Vollständigkeit des Logikkalküls (unpublished dissertation), German-English in [68], pp. 60–101

  55. Gödel, K.: Über die Vollständigkeit der Axiome des logischen Funktionenkalküls, German-English in [68], pp. 102–132 [First Monatshefte für Mathe-matik und Physik 37, 349–360 (1930)]

  56. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, German-English in [67], pp. 144–195 [First Monatshefte für Mathematik und Physik 38, 173–198 (1931)]

  57. Gödel, K.: Über Vollständigkeit und Widerspruchsfreiheit, German-English in [67], pp. 234–237 [First Ergebnisse eines mathematischen Kolloquiums 3, 12–13 (1932)]

  58. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls, German-English in [68], pp. 300–303 [First Ergebnisse eines mathematischen Kolloquiums 4, 39–40 (1933)]

  59. Gödel, K.: On Undecidable Propositions of Formal Mathematical Systems (Lecture Notes, 1934), in [68], pp. 346–371 [First in [33], 39–74]

  60. Gödel, K.: Über die Länge von Beweisen, German-English in [68], pp. 396–399 [First Ergebnisse eines mathematischen Kolloquiums 7, 23–24 (1936)]

  61. Gödel, K.: What is Cantor’s continuum problem in [69], pp. 176–187 [First American Mathematical Monthly 54, 515–525, (1947), 55, 151 (1948)]

  62. Gödel, K.: Some basic theorems on the foundations of mathematics and their implications (Gibbs Lecture), posthumously in [70], pp. 304–323

  63. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, in [69], pp. 240–251 [First Dialectica 12, 280–287 (1958)]

  64. Gödel, K.: What is Cantor’s continuum problem, in [69], pp. 254–270 [Rev. version of [61

  65. Gödel, K.: Postscriptum (3 June 1964), in [68], pp. 369–371 [Further editorial corrections to [59] can be found throughout the reprint]

  66. Gödel, K.: Remark by the author (18 May 1966), in [68], p. 235 [First in [191], footnote to the reprint of [57

  67. Gödel, K.: Appendix, posthumously in [69], pp. 305–306 [An appendix to the galley proofs of the English translation of [63

  68. Gödel, K.: Collected Works. In: Feferman, S., et al. (eds.) Publications 1929–1936, vol. 1. Oxford University Press, Oxford (1986)

  69. Gödel, K.: Collected Works. In: Feferman, S., et al. (eds.) Publications 1938–1974, vol. 2. Oxford University Press, Oxford (1990)

  70. Gödel, K.: Collected Works. In: Feferman, S., et al. (eds.) Unpublished Essays and Lectures, vol. 3. Oxford University Press, Oxford (1995)

  71. Gödel, K.: Collected Works. In: Feferman, S., et al. (eds.) Correspondence A-G, vol. 4. Oxford University Press, Oxford (2003)

  72. Goldfarb, W.: On the effective ω-rule, Zeitschrift für mathematische Logik und Grundlagen der Mathematik (Mathematical Logic Quarterly), vol. 21, pp. 409–412 (1975)

  73. Goldfarb, W.: Herbrand’s theorem and the incompleteness of arithmetic. Iyyum. A Jerusalem Philosophical Quarterly, vol. 39, pp. 45–64 (1990)

  74. Grzegorczyk A.: Undecidability without arithmetization. Stud. Log. 79, 163–230 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. Grzegorczyk A., Mostowski A., Ryll-Nardzewski C.: The classical and ω-complete arithmetic. J. Symb. Log. 23, 188–206 (1958)

    Article  MathSciNet  Google Scholar 

  76. Grzegorczyk, A., Zdanowski, K.: Undecidability and concatenation. In: Ehrenfeucht, A., Marek, V.W., Srebrny M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 72–91. IOS P, Amsterdam, (2008)

  77. Halbach, V., Visser, A.: Self-reference in arithmetic (manuscript, 12/15/2013)

  78. Hájek, P.: Metamathematics of Fuzzy Logics. In: Trends in Logic-Studia Logica Library, vol. 4. Kluwer, Dordrecht (1998)

  79. Hájek P.: Mathematical fuzzy logic and natural numbers. Fundamenta Informaticae 81, 155–163 (2007)

    MathSciNet  MATH  Google Scholar 

  80. Hájek P.: Towards metamathematics of weak arithmetics over fuzzy logic. Log. J. IGPL 19, 467–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1993)

  82. Harrington, L.A., Morley, M.D., Scedrov, A., Simpson, S.G. (eds): Harvey Friedman’s Research on the Foundations of Mathematics. Studies in Logic and the Foundations of Mathematics, vol. 117. North-Holland, Amsterdam (1985)

  83. Henkin L.: A generalization of the concept of ω-completeness. J. Symb. Log. 19, 183–196 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  84. Herbrand, J.: On the consistency of arithmetic, in [85], pp. 282–297 [English transl. Sur la non-contradiction de l’arithmétique, Journal für reine and angewandte Mathematik 166, 1–8 (1931)]

  85. Herbrand, J.: Logical Writings. In: Goldfarb, W.D. (ed.) Harvard University Press, Cambridge (1971)

  86. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, Bd. 2. Springer, Berlin (1939)

  87. Hintikka, J.: Principles of Mathematics Revisited. Cambridge University Press, Cambridge (1996)

  88. Hintikka, J., Sandu, G.: A revolution in logic? Nord. J. Philos. Log. 1, 169–183 (1996)

  89. Isaacson, D.: Necessary and sufficient conditions for undecidability of the Gödel sentence and its truth. In: DeVidi, D., Hallet, M., Clark, P. (eds.) Logic, Mathematics, Philosophy: Vintage Enthusiasm. Essays in Honour of John L. Bell. The Western Ontario Series in Philosophy of Science, vol. 75, pp. 135–152. Springer, Dordrecht (2011)

  90. Japaridze (Dzhaparidze), G.: Introduction to computability logic. Ann. Pure Appl. Log. 123, 1–99 (2003)

  91. Japaridze (Dzhaparidze), G.: PTArithmetic, The Baltic International Yearbook of Cognition, Logic and Communication. Games, Game Theory and Game Semantics, vol. 8, pp. 1–186 (2013)

  92. Jones J.P.: Three universal representations of recursively enumerable sets. J. Symb. Log. 43, 335–351 (1978)

    Article  MATH  Google Scholar 

  93. Jones J.P.: Universal Diophantine equation. J. Symb. Log. 47, 549–571 (1982)

    Article  MATH  Google Scholar 

  94. Jones, J.P., Shepherdson, J.C.: Variants of Robinson’s essentially undecidable theory R. Arch. Math. Log. 23, 61–64 (1983)

  95. Kikuchi, M.: A note on Boolos’ proof of the incompleteness theorem. Math. Log. Q. 40, 528–532 (1994)

  96. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bull. Lond. Math. Soc. 14, 285–293 (1982)

  97. Kleene, S.C.: A symmetric form of Gödel’s theorem. Indagationes Mathematicae 12, 244–246 [Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings of the Section of Sciences 53 (1950), 800–802 (1950)]

  98. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)

  99. Kleene, S.C.: Introductory note to 1934. In: [68], pp. 338–345

  100. Kochen, S., Kripke, S.: Non-standard models of Peano arithmetic, L’Enseignement Mathématique, (2) 28, 211–231 (1982) [First Logic and Algorithmic. An International Symposium in Honour of E. Specker, Monographie de L’Enseignement Mathèmatique, vol. 30, pp. 275–295. Gèneve University Press, Geneva (1982)]

  101. Kotlarski, H.: On the incompleteness theorems. J. Symb. Log. 59, 1414–1419 (1994)

  102. Kotlarski, H.: An addition to Rosser’s theorem. J. Symb. Log. 61, 285–292 (1996)

  103. Kotlarski, H.: Other proofs of old results. Math. Log. Q. 44, 474–480 (1998)

  104. Kotlarski, H.: The incompleteness theorems after 70 years. Ann. Pure Appl. Log. 126, 125–138 (2004)

  105. Kreisel, G.: A refinement of ω-consistency (abstract). J. Symb. Log. 22, 108–109 (1957)

  106. Kreisel, G.: Hilbert’s programme. Dialectica 12, 346–372 (1958) [Rev. In: Benecerraf, P., Putnam, H. (eds.) Philosophy of Mathematics: Selected Readings, pp. 157–180. Prentice Hall/Blackwell, Englewood Cliffs/Oxford (1964)]

  107. Kreisel, G.: Some reasons for generalizing recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium ’69, Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August 1969. Studies in Logic and the Foundations of Mathematics, vol. 61, pp. 139–198. North-Holland, Amsterdam (1971)

  108. Kreisel, G.: Kurt Gödel, 28 April 1906–14 January 1978. Biographical Memoirs of Fellows of the Royal Society of London 26, 149–224 (1980) [Corrections, ibid. 27, 697; 28, 718]

  109. Kripke, S.A.: “Flexible” predicates of formal number theory. Proc. Am. Math. Soc. 13, 647–650 (1962)

  110. Kröger F.: On the interpretability of arithmetic in temporal logic. Theor. Comput. Sci. 73, 47–60 (1990)

    Article  MATH  Google Scholar 

  111. Lambek J.: How to program an infinite abacus. Can. Math. Bull. 4, 295–302 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  112. Lambek J.: What is the world of mathematics. Ann. Pure Appl. Log. 126, 149–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  113. Lambek, J., Scott, P.J.: Reflections on the categorical foundations of mathematics. In: Sommaruga, G. (ed.) Foundational Theories of Classical and Constructive Mathematics. Reflections on a Categorical Foundations of Mathematics, Western Ontario Series in Philosophy of Science, vol. 76, pp. 171–186. Springer, Berlin (2011)

  114. Landry, E., Marquis, J.-P.: Categories in context: historical, foundational, and philosophical. Philosophia Mathematica (III) 13, 1–43 (2005)

  115. Lawvere, F.W.: An elementary theory of the category of sets. Theory Appl. Categ. 11, 1–35 (2005) [First Proceedings of the National Academy of Science of the USA, vol. 52, pp. 1506–1511 (1964)]

  116. Lawvere, F.W.: Diagonal arguments and Cartesian closed categories. Theory Appl. Categ. 15, 1–13 (2006) Category Theory, Homology Theory and Their Applications. Proceedings of the Conference Held at the Seattle Research Center of the Battelle Memorial Institute, June 24–July 19, 1968. [In: Hilton, P.J. (ed.)] Lecture Notes in Mathematics, vol. 92, pp. 134–145. Springer, Berlin (1969)]

  117. Mac Lane, S.: Mathematics, Form and Function. Springer, New York (1986)

  118. Macintyre, A.: The impact of Gödel’s incompleteness theorems on mathematics. In: Baaz, M. et al. (eds.) Kurt Gödel and the Foundations of Mathematics: Horizons of Truth, pp. 3–25. Cambridge University Press, Cambridge (2011)

  119. Maietti M.E.: Joyal’s arithmetic universe as list-arithmetic pretopos. Theory Appl. Categ. 24, 39–83 (2010)

    MathSciNet  MATH  Google Scholar 

  120. Marquis J.-P.: Categorical foundations of mathematics. Or how to provide foundations for abstract mathematics. Rev. Symb. Log. 6, 51–75 (2013)

    MathSciNet  MATH  Google Scholar 

  121. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Dokl. Math. 11, 354–357 (1970) [First Russian Doklady Akademii Nauk SSSR (Proceedings of the Russian Academy of Sciences) 191, 279–282 (1970)]

  122. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. Foundations of Computing. MIT Press, Cambridge (1993)

  123. Meyer, R.K.: ⊃-E is admissible in “true” relevant arithmetic. J. Philos. Log. 27, 327–351 (1998)

  124. Meyer, R.K., Mortensen, C.: Inconsistent models for relevant arithmetics. J. Symb. Log. 49, 917–929 (1984)

  125. Monk, J.D.: Mathematical Logic. Graduate Texts in Mathematics. Springer, New York (1976)

  126. Montague, R.: The continuum of relative interpretability (abstract). J. Symb. Log. 23, 460 (1958)

  127. Montague, R.: Theories incomparable with respect to relative interpretability. J. Symb. Log. 27, 195–211 (1962)

  128. Montagna F., Mancini A.: A minimal predicative set theory. Notre Dame J. Form. Log. 35, 186–203 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  129. Mortensen C.: Inconsistent number systems. Notre Dame J. Form. Log. 29, 45–60 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  130. Mortensen, C.: Inconsistent Mathematics. Mathematics and Its Applications, vol. 312. Kluwer, Dordrecht (1995)

  131. Mortensen, C.: Inconsistent mathematics. Some philosophical implications. In: Gabbay, D.M., Thagard, P., Woods, J. (eds.) Handbook of the Philosophy of Science [Irvine, A.I. (ed.) Philosophy of Mathematics, vol. 4], pp. 631–649. Elsevier, Amsterdam (2009)

  132. Mostowski, A.: A generalization of the incompleteness theorem. In: [133], vol. 2, pp. 376–403 [First Fundamenta Mathematicae 49, 205–232 (1961)]

  133. Mostowksi, A.: Foundational Studies. In: Selected Works. Kuratowski, K., et al. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 93 North-Holland & Warsaw/Pánstowe Wydawnictwo Naukowe, Amsterdam (1979)

  134. Mostowski, A., Robinson, R.M., Tarski, A.: Undecidability and essential undecidability in arithmetic. In: [187], pp. 37–87

  135. Murawksi, R.: Undefinability of truth. The problem of the priority: Tarski vs. Gödel. Hist. Philos. Log. 19, 153–160 (1998)

  136. Myhill, J.: An absolutely independent set of \({\Sigma^0_1}\) -sentences. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 18, 107–109 (1972)

  137. Nelson, E.: Predicative Arithmetic. Mathematical Notes, vol. 32. Princeton University Press, Princeton (1986)

  138. Odifreddi, P.: Classical Recursion Theory. [I:] The Theory of Functions and Sets of Natural Numbers. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)

  139. Orey S.: On ω-consistency and related properties. J. Symb. Log. 21, 246–252 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  140. Owings, J.C., Jr: Diagonalization and the recursion theorem. Notre Dame J. Form. Log. 14, 95–99 (1973)

  141. Paris, J.B., Harrington, L.: A mathematical incompleteness in Peano Arithmetic. In: [8], pp. 1133–1142

  142. Paris J.B., Pathmanathan N.: A note on Priest’s finite inconsistent arithmetics. J. Philos. Log. 35, 529–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  143. Paris J.B., Sirokofskich A.: On LP-models of arithmetic. J. Symb. Log. 73, 212–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  144. Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. Rev. Symb. Log. 7, 484–498 (2014)

  145. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-rendus du I Congrès des Mathématiciens des Pays Slaves (Warszawa 1929). Warsaw, pp. 92–101, 395 (1930)

  146. Priest G.: The logic of paradox. J. Philos. Log. 8, 219–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  147. Priest G.: Minimally inconsistent LP. Stud. Log. 50, 321–331 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  148. Priest, G.: Is arithmetic consistent? Mind NS 103, 337–349 (1994)

  149. Priest G.: Inconsistent models of arithmetic. Part I: finite models. J. Philos. Log. 26, 223–235 (1997)

    MathSciNet  MATH  Google Scholar 

  150. Priest G.: Inconsistent models of arithmetic. Part II: the general case. J. Symb. Log. 65, 1519–1529 (2000)

    MathSciNet  MATH  Google Scholar 

  151. Priest, G.: In Contradiction: A Study of the Transconsistent. Oxford University Press, Oxford (2006) [1st edn. Nijhoff, Dordrecht (1987)]

  152. Putnam, H.: Non-standard numbers and Kripke’s proof of the Gödel theorem. Notre Dame J. Form. Log. 41, 53–58 (2000)

  153. Quinsey, J.E.: Some Problems in Logic. Doctoral dissertation. St. Catherine’s College, Oxford (1980)

  154. Raatikainen, P.: On interpreting Chaitin’s incompleteness theorem. J. Philos. Log. 27, 569–586 (1998)

  155. Raatikainen, P.: On the philosophical relevance of Gödel’s incompleteness theorems. Revue Internationale de Philosophie 59, 513–534 (2005)

  156. Reid, S.: Relevant Logic. Blackwells, Oxford (1988)

  157. Reidhaar-Olson, L.: A new proof of the fixed-point theorem of provability logic. Notre Dame J. Form. Log. 31, 37–43 (1990)

  158. Restall, G.: Models for substructural arithmetics. In: Bilková, M. (ed.) Miscellanea Logica, pp. 1–20. Charles University, Prague (2008)

  159. Robinson J.: Definability and decision problems in arithmetic. J. Symb. Log. 14, 98–114 (1949)

    Article  MATH  Google Scholar 

  160. Robinson, R.M.: An essentially undecidable axiom system. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, August 30–September 6, 1950, vol. 1, pp. 729–730. AMS, Providence (1952)

  161. Rose, H.E.: Subrecursion: Functions and Hierarchies. Oxford Logic Guides, vol. 9. Oxford University Press, Oxford (1984)

  162. Rosser, B.: Extensions of some theorems of Gödel and Church. J. Symb. Log. 1, 87–91 (1936)

  163. Rosser B.: Gödel theorems for non-constructive logics. J. Symb. Log. 2, 129–137 (1937)

    Article  Google Scholar 

  164. Sacks, G.E.: Higher Recursion Theory. Perspectives in Mathematical Logic. Springer, Berlin (1990)

  165. Schiller, F.: Xenien. In: Petersen, J. (ed.) Schillers Werke, Blumenthal, L. (ed.) Gedichte in der Reihenfolge ihres Erscheinens, vol. 1, 1776–1799, Böhlau, Weimar (1943)

  166. Schmerl, U.R.: Iterated reflection principles and the ω-rule. J. Symb. Log. 47, 721–733 (1982)

  167. Scholz, H.: Mathesis Universalis. Abhandlungen zur Philosophie als strenger Wissenschaft. In: Kambartel, H., Kambartel, F., Ritter, J. (eds.) Schwabe, Basel (1961)

  168. Seising, R.: Fuzzification of Systems: The Genesis of Fuzzy Set Theory and its Initial Applications—Developments up to the 1970s. Studies in Fuzziness and Soft Computing, vol. 21. Springer, Berlin (2007) [First German edn. Steiner, Stuttgart (2005)]

  169. Shoenfield, J.R.: On a restricted ω-rule. Bulletin de l’Académie Polonaise des Sciences 7, 405–407 (1959)

  170. Skolem, T.: Über einige Satzfunktionen in der Arithmetik. In: [171], pp. 281–306 [First Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Matematisk-naturvidenskabelig klasse, vol. 7, pp. 1–28 (1931)]

  171. Skolem, T.: Selected works in logic. In: Fenstad, J.E. (ed.) Universitetsforlaget, Oslo (1970)

  172. Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge (2007)

  173. Smoryński, C.: Avoiding self-referential statements. Proc. Am. Math. Soc. 70, 181–184 (1978)

  174. Smoryński, C.: Some rapidly growing functions. Mathematical Intelligencer 2, 149–154 (1979–1980) [repr. in [82], 367–380]

  175. Smoryński, C.: Fifty years of self-reference in arithmetic. Notre Dame J. Form. Log. 22, 357–374 (1981)

  176. Smoryński, C.: The varieties of arboreal experience. Mathematical Intelligencer 4, 182–189 (1982) [repr. in [82], pp. 381–398]

  177. Smoryński, C.: Self-reference and Modal Logic. Universitext. Springer, New York (1985)

  178. Smullyan R.M.: Languages in which self-reference is possible. J. Symb. Log. 22, 55–67 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  179. Smullyan R.M.: Chameleonic languages. Synthese 60, 201–224 (1984)

    Article  MathSciNet  Google Scholar 

  180. Smullyan, R.M.: Diagonalization and Self-Reference. Oxford Logic Guides, vol. 27. Oxford University Press, New York (1994)

  181. Solovay, R.M.: Injecting Inconsistencies into models of PA. Ann. Pure Appl. Log. 44, 101–132 (1989)

  182. Švejdar, V.: An interpretation of Robinson arithmetic in its Grzegorczyk’s weaker variant. Fundamenta Informaticae 81, 347–354 (2007)

  183. Švejdar, V.: Weak theories and essential incompleteness. In: Peliš, M. (ed.) The Logica Yearbook 2007: Proceedings of the Logica 07 International Conference, pp. 213–224. Philosophia, Prague (2008)

  184. Švejdar, V.: On interpretability in the theory of concatenation. Notre Dame J. Form. Log. 50, 87–95 (2009)

  185. Świerczkowski, S.: Finite sets and Gödel’s incompleteness theorems, Dissertationes Mathematicae Rozprawy Matematyczne, vol. 422. Institute of Mathematics, Polish Academy of Sciences, Warsaw (2003)

  186. Szmielew, W., Tarski, A.: Mutual interpretability of some essentially undecidable theories. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, August 30–September 6, 1950, vol. 1, p. 734. AMS, Providence (1952)

  187. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1953) [3rd edn, 1971]

  188. Tarski, A., Givant, S.: A formalization of set theory without variables. American Mathematical Society Colloquium Publications, vol. 41. AMS, Providence (1987)

  189. Turing, A.: Systems of logic based on ordinals. In: [68], pp. 155–222 [First Proceedings of the London Mathematical Society (2) 45, 161–228 (1939)]

  190. van Bendegem, J.P.: In defense of strict finitism. Math. Constr. 7, 141–149 (2013)

  191. van Heijenoort, J. (ed.): From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)

  192. van Lambalgen, M.: Algorithmic information theory. J. Symb. Log. 54, 1389–1400 (1989)

  193. Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology, and Philosophy of Science. Proceedings of the 1960 International Congress, pp. 14–25. Stanford University Press, Stanford (1962)

  194. Visser, A.: Growing commas: a study of sequentiality and concatenation. Notre Dame J. Form. Log. 50, 61–85 (2009)

  195. Visser, A.: Why the theory R is special. In: Tennant, N. (ed.) Foundational Adventures. Essays in honour of Harvey Friedman, Tributes, vol. 22. College Publications, London (2014) [Copy used: Logic Group Preprint Series, vol. 279, Utrecht (2009)]

  196. Wang H.: Undecidable sentences generated by semantic paradoxes. J. Symb. Log. 20, 31–43 (1952)

    Article  Google Scholar 

  197. Wilkie A.J., Paris J.B.: On the scheme of induction for bounded formulas. Ann. Pure Appl. Log. 35, 261–302 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  198. Yanofsky, N.Y.: A universal approach to self-referential paradoxes, incompleteness and fixed points. Bull. Symb. Log. 9, 362–386 (2003)

  199. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

  200. Zadeh L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37, 77–84 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Buldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buldt, B. The Scope of Gödel’s First Incompleteness Theorem. Log. Univers. 8, 499–552 (2014). https://doi.org/10.1007/s11787-014-0107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-014-0107-3

Mathematics Subject Classification

Keywords

Navigation