Skip to main content
Log in

New strong bounds on sub-GeV dark matter from boosted and Migdal effects

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Due to the low nuclear recoils, sub-GeV dark matter (DM) is usually beyond the sensitivity of the conventional DM direct detection experiments. The boosted and Migdal scattering mechanisms have been proposed as two new complementary avenues to search for light DM. In this study, we consider the momentum-transfer effect in the DM-nucleus scattering to derive the new bounds on sub-GeV DM for these two scenarios. We show that such an effect is sizable so that the existing bounds on the DM-nucleus scattering cross section can be improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. Lee, and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977).

    Article  ADS  Google Scholar 

  2. G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).

    Article  ADS  Google Scholar 

  3. L. Roszkowski, E. M. Sessolo, and S. Trojanowski, Rep. Prog. Phys. 81, 066201 (2018), arXiv: 1707.06277.

    Article  ADS  Google Scholar 

  4. R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012), arXiv: 1108.5383.

    Article  ADS  Google Scholar 

  5. Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett. 116, 011301 (2016), arXiv: 1504.07237.

    Article  ADS  Google Scholar 

  6. R. Essig, M. Fernández-Serra, J. Mardon, A. Soto, T. Volansky, and T. T. Yu, J. High Energ. Phys. 2016, 46 (2016).

    Article  Google Scholar 

  7. R. Essig, T. Volansky, and T. T. Yu, Phys. Rev. D 96, 043017 (2017), arXiv: 1703.00910.

    Article  ADS  Google Scholar 

  8. S. Knapen, T. Lin, and K. M. Zurek, Phys. Rev. D 96, 115021 (2017), arXiv: 1709.07882.

    Article  ADS  Google Scholar 

  9. G. Bertone, and T. M. P. Tait, Nature 562, 51 (2018), arXiv: 1810.01668.

    Article  ADS  Google Scholar 

  10. T. Bringmann, and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019), arXiv: 1810.10543.

    Article  ADS  Google Scholar 

  11. C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, Phys. Rev. D 99, 063004 (2019), arXiv: 1810.07705.

    Article  ADS  Google Scholar 

  12. Y. Ema, F. Sala, and R. Sato, Phys. Rev. Lett. 122, 181802 (2019), arXiv: 1811.00520.

    Article  ADS  Google Scholar 

  13. C. V. Cappiello, and J. F. Beacom, Phys. Rev. D 100, 103011 (2019), arXiv: 1906.11283 [Erratum: Phys. Rev. D 104, 069901 (2021)].

    Article  ADS  Google Scholar 

  14. J. B. Dent, B. Dutta, J. L. Newstead, and I. M. Shoemaker, Phys. Rev. D 101, 116007 (2020), arXiv: 1907.03782.

    Article  ADS  Google Scholar 

  15. K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg, and A. Sokolenko, J. High Energ. Phys. 2020, 118 (2020).

    Article  Google Scholar 

  16. W. Wang, L. Wu, J. M. Yang, H. Zhou, and B. Zhu, J. High Energ. Phys. 2020, 72 (2020) [Erratum: J. High Energ. Phys. 2021, 52 (2021)].

    Article  Google Scholar 

  17. J. Smirnov, and J. F. Beacom, Phys. Rev. Lett. 125, 131301 (2020).

    Article  ADS  Google Scholar 

  18. G. Guo, Y. L. S. Tsai, and M. R. Wu, J. Cosmol. Astropart. Phys. 2020(10), 049 (2020), arXiv: 2004.03161.

    Article  Google Scholar 

  19. S.-F. Ge, J.-L. Liu, Q. Yuan, and N. Zhou, arXiv: 2005.09480.

  20. Q.-H. Cao, R. Ding, and Q.-F. Xiang, arXiv: 2006.12767.

  21. G. Guo, Y. L. S. Tsai, M. R. Wu, and Q. Yuan, Phys. Rev. D 102, 103004 (2020), arXiv: 2008.12137.

    Article  ADS  Google Scholar 

  22. C. Xia, Y.-H. Xu, and Y.-F. Zhou, arXiv: 2009.00353.

  23. J. Alvey, M. D. Campos, M. Fairbairn, and T. You, Phys. Rev. Lett. 123, 261802 (2019), arXiv: 1905.05776.

    Article  ADS  Google Scholar 

  24. L. Su, W. Wang, L. Wu, J. M. Yang, and B. Zhu, Phys. Rev. D 102, 115028 (2020), arXiv: 2006.11837.

    Article  ADS  Google Scholar 

  25. A. Migdal, Sov. Phys. J. High Energ. Phys. 9, 1163 (1939).

    Google Scholar 

  26. J. D. Vergados, and H. Ejiri, Phys. Lett. B 606, 313 (2005), arXiv: hep-ph/0401151.

    Article  ADS  Google Scholar 

  27. C. C. Moustakidis, J. D. Vergados, and H. Ejiri, Nucl. Phys. B 727, 406 (2005), arXiv: hep-ph/0507123.

    Article  ADS  Google Scholar 

  28. R. Bernabei, P. Belli, F. Montecchia, F. Nozzoli, F. Cappella, A. Incicchitti, D. Prosperi, R. Cerulli, C. J. Dai, H. L. He, H. H. Kuang, J. M. Ma, X. D. Sheng, and Z. P. Ye, Int. J. Mod. Phys. A 22, 3155 (2007), arXiv: 0706.1421.

    Article  ADS  Google Scholar 

  29. M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, J. High Energ. Phys. 2018, 194 (2018).

    Article  Google Scholar 

  30. M. J. Dolan, F. Kahlhoefer, and C. McCabe, Phys. Rev. Lett. 121, 101801 (2018), arXiv: 1711.09906.

    Article  ADS  Google Scholar 

  31. N. F. Bell, J. B. Dent, J. L. Newstead, S. Sabharwal, and T. J. Weiler, Phys. Rev. D 101, 015012 (2020), arXiv: 1905.00046.

    Article  ADS  Google Scholar 

  32. D. Baxter, Y. Kahn, and G. Krnjaic, Phys. Rev. D 101, 076014 (2020), arXiv: 1908.00012.

    Article  ADS  Google Scholar 

  33. R. Essig, J. Pradler, M. Sholapurkar, and T. T. Yu, Phys. Rev. Lett. 124, 021801 (2020), arXiv: 1908.10881.

    Article  ADS  Google Scholar 

  34. Z. L. Liang, L. Zhang, F. Zheng, and P. Zhang, Phys. Rev. D 102, 043007 (2020), arXiv: 1912.13484.

    Article  ADS  Google Scholar 

  35. K. D. Nakamura, K. Miuchi, S. Kazama, Y. Shoji, M. Ibe, and W. Nakano, Prog. Theor. Exp. Phys. 2021, 013C01 (2021), arXiv: 2009.05939.

    Article  Google Scholar 

  36. G. G. di Cortona, A. Messina, and S. Piacentini, J. High Energ. Phys. 2020, 034 (2020).

    Article  Google Scholar 

  37. U. K. Dey, T. N. Maity, and T. S. Ray, Phys. Lett. B 811, 135900 (2020), arXiv: 2006.12529.

    Article  Google Scholar 

  38. C. P. Liu, C. P. Wu, H. C. Chi, and J. W. Chen, Phys. Rev. D 102, 121303 (2020), arXiv: 2007.10965.

    Article  ADS  Google Scholar 

  39. S. Knapen, J. Kozaczuk, and T. Lin, Phys. Rev. Lett. 127, 081805 (2021), arXiv: 2011.09496.

    Article  ADS  Google Scholar 

  40. Z. L. Liang, C. Mo, F. Zheng, and P. Zhang, Phys. Rev. D 104, 056009 (2021), arXiv: 2011.13352.

    Article  ADS  Google Scholar 

  41. H. J. He, Y. C. Wang, and J. Zheng, Phys. Rev. D 104, 115033 (2021), arXiv: 2012.05891.

    Article  ADS  Google Scholar 

  42. M. Pospelov, A. Ritz, and M. Voloshin, Phys. Lett. B 662, 53 (2008), arXiv: 0711.4866.

    Article  ADS  Google Scholar 

  43. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713.

    Article  ADS  Google Scholar 

  44. J. L. Feng, H. Tu, and H. B. Yu, J. Cosmol. Astropart. Phys. 2008(10), 043 (2008), arXiv: 0808.2318.

    Article  Google Scholar 

  45. C. Bœhm, and P. Fayet, Nucl. Phys. B 683, 219 (2004), arXiv: hep-ph/0305261.

    Article  ADS  Google Scholar 

  46. H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Rev. Lett. 120, 141801 (2018), arXiv: 1708.03642 [Erratum: Phys. Rev. Lett. 121, 259903 (2018)].

    Article  ADS  Google Scholar 

  47. H. B. T. Tan, A. Derevianko, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 127, 081301 (2021), arXiv: 2105.08296.

    Article  ADS  Google Scholar 

  48. B. Batell, A. Freitas, A. Ismail, and D. McKeen, Phys. Rev. D 100, 095020 (2019), arXiv: 1812.05103.

    Article  ADS  Google Scholar 

  49. M. J. Boschini, S. D. Torre, M. Gervasi, D. Grandi, G. Jóhannesson, M. Kachelriess, G. L. Vacca, N. Masi, I. V. Moskalenko, E. Orlando, S. S. Ostapchenko, S. Pensotti, T. A. Porter, L. Quadrani, P. G. Rancoita, D. Rozza, and M. Tacconi, Astrophys. J. 840, 115 (2017), arXiv: 1704.06337.

    Article  ADS  Google Scholar 

  50. G. Duda, A. Kemper, and P. Gondolo, J. Cosmol. Astropart. Phys. 04, 012 (2007).

    Article  ADS  Google Scholar 

  51. S. Adler, M. Aoki, M. Ardebili, M. S. Atiya, A. O. Bazarko, P. C. Bergbusch, B. Bhuyan, E. W. Blackmore, D. A. Bryman, I. H. Chiang, M. R. Convery, M. V. Diwan, J. S. Frank, J. S. Haggerty, T. Inagaki, M. Ito, V. Jain, D. E. Jaffe, S. Kabe, M. Kazumori, S. H. Kettell, P. Kitching, M. Kobayashi, T. K. Komatsubara, A. Konaka, Y. Kuno, M. Kuriki, T. F. Kycia, K. K. Li, L. S. Littenberg, D. R. Marlow, R. A. McPherson, J. A. Macdonald, P. D. Meyers, J. Mildenberger, N. Muramatsu, T. Nakano, C. Ng, S. Ng, T. Numao, J. M. Poutissou, R. Poutissou, G. Redlinger, T. Sasaki, T. Sato, T. Shinkawa, F. C. Shoemaker, A. J. S. Smith, R. Soluk, J. R. Stone, R. C. Strand, S. Sugimoto, Y. Yoshimura, and C. Witzig, Phys. Lett. B 537, 211 (2002).

    Article  ADS  Google Scholar 

  52. S. Adler, M. Aoki, M. Ardebili, M. S. Atiya, A. O. Bazarko, P. C. Bergbusch, B. Bhuyan, E. W. Blackmore, D. A. Bryman, I. H. Chiang, M. R. Convery, M. V. Diwan, J. S. Frank, J. S. Haggerty, T. Inagaki, M. M. Ito, V. Jain, D. E. Jaffe, S. Kabe, M. Kazumori, S. H. Kettell, P. Kitching, M. Kobayashi, T. K. Komatsubara, A. Konaka, Y. Kuno, M. Kuriki, T. F. Kycia, K. K. Li, L. S. Littenberg, J. A. MacDonald, R. A. McPherson, P. D. Meyers, J. Mildenberger, N. Muramatsu, T. Nakano, C. Ng, S. Ng, T. Numao, A. Otomo, J. M. Poutissou, R. Poutissou, G. Redlinger, T. Sasaki, T. Sato, T. Shinkawa, F. C. Shoemaker, A. J. S. Smith, R. Soluk, J. R. Stone, R. C. Strand, S. Sugimoto, C. Witzig, and Y. Yoshimura, Phys. Rev. D 70, 037102 (2004), arXiv: hep-ex/0403034.

    Article  ADS  Google Scholar 

  53. S. Adler, V. V. Anisimovsky, M. Aoki, M. Ardebili, A. V. Artamonov, M. Atiya, B. Bassalleck, A. O. Bazarko, B. Bhuyan, E. W. Blackmore, D. A. Bryman, S. Chen, I. H. Chiang, I. A. Christidi, M. R. Convery, P. S. Cooper, M. V. Diwan, J. S. Frank, T. Fujiwara, J. Haggerty, J. Hu, T. Inagaki, M. M. Ito, A. P. Ivashkin, D. E. Jaffe, S. Kabe, M. Kazumori, Y. Kuno, M. Kuriki, S. H. Kettell, M. M. Khabibullin, A. N. Khotjantsev, P. Kitching, M. Kobayashi, T. K. Komatsubara, A. Konaka, A. P. Kozhevnikov, Y. G. Kudenko, A. Kushnirenko, L. G. Landsberg, B. Lewis, K. K. Li, L. S. Littenberg, J. A. MacDonald, D. R. Marlow, R. A. McPherson, P. D. Meyers, J. Mildenberger, O. V. Mineev, M. Miyajima, K. Mizouchi, V. A. Mukhin, N. Muramatsu, T. Nakano, M. Nomachi, T. Nomura, T. Numao, V. F. Obraztsov, K. Omata, D. I. Patalakha, S. V. Petrenko, R. Poutissou, E. J. Ramberg, G. Redlinger, T. Sato, T. Sekiguchi, T. Shinkawa, F. C. Shoemaker, A. J. S. Smith, J. R. Stone, R. C. Strand, S. Sugimoto, Y. Tamagawa, R. Tschirhart, T. Tsunemi, D. V. Vavilov, B. Viren, N. V. Yershov, Y. Yoshimura, and T. Yoshioka, Phys. Rev. D 77, 052003 (2008), arXiv: 0709.1000.

    Article  ADS  Google Scholar 

  54. A. V. Artamonov, B. Bassalleck, B. Bhuyan, E. W. Blackmore, D. A. Bryman, S. Chen, I. H. Chiang, I. A. Christidi, P. S. Cooper, M. V. Diwan, J. S. Frank, T. Fujiwara, J. Hu, J. Ives, D. E. Jaffe, S. Kabe, S. H. Kettell, M. M. Khabibullin, A. N. Khotjantsev, P. Kitching, M. Kobayashi, T. K. Komatsubara, A. Konaka, A. P. Kozhevnikov, Y. G. Kudenko, A. Kushnirenko, L. G. Landsberg, B. Lewis, K. K. Li, L. S. Littenberg, J. A. MacDonald, J. Mildenberger, O. V. Mineev, M. Miyajima, K. Mizouchi, V. A. Mukhin, N. Muramatsu, T. Nakano, M. Nomachi, T. Nomura, T. Numao, V. F. Obraztsov, K. Omata, D. I. Patalakha, S. V. Petrenko, R. Poutissou, E. J. Ramberg, G. Redlinger, T. Sato, T. Sekiguchi, T. Shinkawa, R. C. Strand, S. Sugimoto, Y. Tamagawa, R. Tschirhart, T. Tsunemi, D. V. Vavilov, B. Viren, Z. Wang, N. V. Yershov, Y. Yoshimura, and T. Yoshioka, Phys. Rev. D 79, 092004 (2009), arXiv: 0903.0030.

    Article  ADS  Google Scholar 

  55. A. A. Aguilar-Arevalo, M. Backfish, A. Bashyal, B. Batell, B. C. Brown, R. Carr, A. Chatterjee, R. L. Cooper, P. de Niverville, R. Dharmapalan, Z. Djurcic, R. Ford, F. G. Garcia, G. T. Garvey, J. Grange, J. A. Green, E. C. Huang, W. Huelsnitz, I. L. de Icaza Astiz, G. Karagiorgi, T. Katori, W. Ketchum, T. Kobilarcik, Q. Liu, W. C. Louis, W. Marsh, C. D. Moore, G. B. Mills, J. Mirabal, P. Nienaber, Z. Pavlovic, D. Perevalov, H. Ray, B. P. Roe, M. H. Shaevitz, S. Shahsavarani, I. Stancu, R. Tayloe, C. Taylor, R. T. Thornton, R. G. Van de Water, W. Wester, D. H. White, and J. Yu, Phys. Rev. D 98, 112004 (2018), arXiv: 1807.06137.

    Article  ADS  Google Scholar 

  56. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 121, 111302 (2018), arXiv: 1805.12562.

    Article  ADS  Google Scholar 

  57. V. Gluscevic, and K. K. Boddy, Phys. Rev. Lett. 121, 081301 (2018), arXiv: 1712.07133.

    Article  ADS  Google Scholar 

  58. W. L. Xu, C. Dvorkin, and A. Chael, Phys. Rev. D 97, 103530 (2018), arXiv: 1802.06788.

    Article  ADS  Google Scholar 

  59. J. Ooba, H. Tashiro, and K. Kadota, J. Cosmol. Astropart. Phys. 2019(9), 020 (2019), arXiv: 1902.00826.

    Article  Google Scholar 

  60. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, Phys. Rev. Lett. 109, 021301 (2012), arXiv: 1206.2644.

    Article  ADS  Google Scholar 

  61. B. M. Roberts, V. A. Dzuba, V. V. Flambaum, M. Pospelov, and Y. V. Stadnik, Phys. Rev. D 93, 115037 (2016), arXiv: 1604.04559.

    Article  ADS  Google Scholar 

  62. R. Catena, T. Emken, N. A. Spaldin, and W. Tarantino, Phys. Rev. Res. 2, 033195 (2020), arXiv: 1912.08204.

    Article  Google Scholar 

  63. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 123, 251801 (2019), arXiv: 1907.11485.

    Article  ADS  Google Scholar 

  64. A. Berlin, and N. Blinov, Phys. Rev. Lett. 120, 021801 (2018), arXiv: 1706.07046.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Su, Lei Wu or Bin Zhu.

Additional information

Lei Wu was supported by the National Natural Science Foundation of China (Grant No. 12275134). Bin Zhu was supported by the National Natural Science Foundation of China (Grant No. 12275232), and the Natural Science Foundation of Shandong Province (Grant No. ZR2018QA007). Victor V. Flambaum was supported by the Australian Research Council (Grant Nos. DP190100974, and DP200100150). We are grateful to Ben Roberts for a useful discussion.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flambaum, V.V., Su, L., Wu, L. et al. New strong bounds on sub-GeV dark matter from boosted and Migdal effects. Sci. China Phys. Mech. Astron. 66, 271011 (2023). https://doi.org/10.1007/s11433-022-2090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2090-7

Navigation