Skip to main content

Advertisement

Log in

Hyperdiploidy defines a distinct cytogenetic entity of meningiomas

  • Original Paper
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

The most common chromosomal aberration found in meningiomas is monosomy 22. Progression and recurrence of meningiomas are usually associated with additional chromosome losses. Rarely, however, meningiomas have strongly hyperdiploid karyotypes with over 50 chromosomes; the objective of this study was to explore the cytogenetic and histopathologic patterns as well as the clinical significance of hyperdiploidy in meningiomas.

Methods

Within a series of 677 consecutive meningiomas, we identified a subgroup comprising 16 cases that display a strikingly uniform pattern of hyperdiploidy mostly without structural chromosome rearrangements, as shown by banding techniques and, in the single structurally aberrant case, spectral karyotyping.

Results

These meningiomas each have between 50 and 56 chromosomes, with trisomy 12 (14/16 cases), trisomy 20 (13/16 cases), trisomy 5 (12/16 cases), and trisomy 17 (10/16 cases). Histomorphologically, hyperdiploid meningiomas feature a heterogeneous phenotype. However, they are associated with a higher histological grade, and decreased expression of alkaline phosphatase as compared to meningiomas with typical karyotype. In two patients, recurrences were documented and three patients died of disease during the period of observation, indicating a worse prognosis of hyperdiploid than of cytogenetically typical meningiomas.

Conclusion

We conclude that hyperdiploidy constitutes a small but clinically relevant entity of biologically aggressive meningiomas, which are cytogenetically distinguishable from the majority of common-type meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kujas M (1993) Meningioma. Curr Opin Neurol Neurosurg 6:882–887

    Article  CAS  Google Scholar 

  2. Bello MJ, de Campos JM, Vaquero J, Kusak ME, Sarasa JL, Rey JM, Pestana A (1993) Chromosome 22 heterozygosity is retained in most hyperdiploid and pseudodiploid meningiomas. Cancer Genet Cytogenet 66:117–119

    Article  PubMed  CAS  Google Scholar 

  3. Bello MJ, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Pestana A, Rey JA (1994) Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9:296–298

    Article  PubMed  CAS  Google Scholar 

  4. Ketter R, Henn W, Niedermayer I, Steilen-Gimbel H, König J, Zang KD, Steudel WI (2001) Predictive value of progression-associated chromosome aberrations for the prognosis of meningiomas: a retrospective study of 198 cases. J Neurosurg 95:601–607

    PubMed  CAS  Google Scholar 

  5. Kolles H, Niedermayer I, Schmitt C, Henn W, Feld R, Steudel WI, Zang KD, Feiden W (1995) Triple approach for diagnosis and grading of meningiomas: histology, morphometry of Ki-67/Feulgen stainings, and cytogenetics. Acta Neurochir 137:174–181

    Article  CAS  Google Scholar 

  6. Zang KD (1982) Cytological and cytogenetical studies on human meningioma. Cancer Genet Cytogenet 6:249–274

    Article  PubMed  CAS  Google Scholar 

  7. Sayagues JM, Tabernero MD, Maillo A, Espinosa A, Rasillo A, Diaz P, Ciudad J, Lopez A, Merino M, Goncalves JM, Santos-Briz A, Morales F, Orfao A (2004) Intratumoral patterns of clonal evolution in meningiomas as defined by multicolor interphase fluorescence in situ hybridization (FISH): is there a relationship between histopathologically benign and atypical/anaplastic lesions?. J Mol Diagn 6:316–325

    PubMed  Google Scholar 

  8. Zankl H, Singer H, Zang KD (1971) Cytological and cytogenetical studies on brain tumors. II. Hyperdiploidy, a rare event in human primary meningiomas. Humangenetik 11:253–257

    Article  PubMed  CAS  Google Scholar 

  9. Adegbite AB, Khan MI, Paine KWE, Tan LK (1983) The recurrence of intracranial meningiomas after surgical treatment. J Neurosurg 58:51–56

    PubMed  CAS  Google Scholar 

  10. Arnoldus EP, Wolters LB, Voormolen JH, van Diunen SG, Raap AK, van der Ploeg M, Peters AC (1992) Interphase cytogenetics: a new tool for study of genetic changes in brain tumors. J Neurosurg 76:997–1003

    Article  PubMed  CAS  Google Scholar 

  11. Scholz M, Gottschalk J, Striepecke E, Firsching R, Harders A, Füzesi L (1996) Intratumorous heterogeneity of chromosomes 10 and 17 in meningiomas using non-radioactive in situ hybridization. J Neurosurg Sci 40:17–23

    PubMed  CAS  Google Scholar 

  12. Maillo A, Diaz P, Sayagues JM, Blanco A, Tabernero MD, Ciudad J, Lopez A, Goncalves JM, Orfao A (2001) Gains of chromosome 22 by fluorescence in situ hybridization in the context of an hyperdiploid karyotype are associated with aggressive clinical features in meningioma patients. Cancer 92:377–385

    Article  PubMed  CAS  Google Scholar 

  13. Steudel WI, Feld R, Henn W, Zang KD (1996) Correlation between cytogenetic and clinical findings in 215 human meningiomas. Acta Neurochir Suppl 65:73–76

    PubMed  CAS  Google Scholar 

  14. Olivecrona H (1934) Die parasagittalen Meningiome. Thieme, Leipzig

    Google Scholar 

  15. Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurochem 20:22–39

    CAS  Google Scholar 

  16. Limon J, Dal Cin P, Sandberg AA (1986) Application of long-term collagenase disaggregation for the cytogenetic analysis of human solid tumors. Cancer Genet Cytogenet 23:305–313

    Article  PubMed  CAS  Google Scholar 

  17. Schröck E, Padilla-Nash H (2000) Spectral karyotyping and multicolor fluorescence in situ hybridization reveal new tumor-specific chromosomal aberrations. Semin Hematol 37:334–347

    Article  PubMed  Google Scholar 

  18. Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ (2000) Meningiomas. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. IARC, Lyon, pp 176–184

    Google Scholar 

  19. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1998) The prognostic significance of MIB-1, p53 and DNA flow cytometry in completely resected primary meningiomas. Cancer 82:2262–2269

    Article  PubMed  CAS  Google Scholar 

  20. Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neurooncol 70:183–302

    Article  PubMed  Google Scholar 

  21. Niedermayer I, Feiden W, Henn W, Steilen-Gimbel H, Steudel WI, Zang KD (1997) Loss of alkaline phosphatase activity in meningiomas: a rapid histochemical technique indicating progression-associated deletion of a putative tumor suppressor gene on the distal part of the short arm of chromosome 1. J Neuropathol Exp Neurol 56:879–886

    PubMed  CAS  Google Scholar 

  22. Kim Y, Romeike B, Uszkoreit J, Feiden W (2005) The ImageJ based program and its description are downloadable at the morphometry section of http://www.uniklinikum-saarland.de/neuropathologie

  23. Beerenwinkel N, Rahnenführer J, Däumer M, Hoffmann D, Kaiser R, Selbig J, Lengauer T (2005) Learning multiple evolutionary pathways from cross-sectional data. J Comput Biol 12(6):584–598

    Article  PubMed  CAS  Google Scholar 

  24. Beerenwinkel N, Rahnenführer J, Kaiser R, Hoffmann D, Selbig J, Lengauer T (2005) Mtreemix: a software package for learning and use mixture models of mutagenetic trees. Bioinformatics 21(9):2106–2107

    Article  PubMed  CAS  Google Scholar 

  25. Rahnenführer R, Beerenwinkel N, Schulz WA, Hartmann C, von Deimling A, Wullich B, Lengauer T (2005) Estimating cancer survival and clinical outcome based on genetic tumor progression scores. Bioinformatics 21:2438–2446

    Article  PubMed  CAS  Google Scholar 

  26. Zülch KJ (1979) Histological typing of tumors of the central nervous system. World Health Organization, Geneva

    Google Scholar 

  27. Menon AG, Rutter JL, von Sattel JP, Snyder H, Murdoch C, Blumenfeld A, Martuza RL, von Deimling A, Gusella JF, Houseal TW (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative “tumor progression” locus. Oncogene 14:611–616

    Article  PubMed  CAS  Google Scholar 

  28. Cushing H (1922) The cranial hyperostoses produced by meningeal endotheliomas. Arch Neurol Psychiatry 8:139–152

    Google Scholar 

  29. Zankl H, Zang KD (1980) Correlation between clinical and cytogenetical data in 180 human meningiomas. Cancer Genet Cytogenet 1:351–356

    Article  Google Scholar 

  30. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr, Menon AG (1995) Allelic loss on chromosomes 14, 10 and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701

    PubMed  CAS  Google Scholar 

  31. Zang KD (2001) Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet 293:207–220

    Article  Google Scholar 

  32. Wellenreuther R, Kraus JA, Lenartz D, Menon G, Schramm J, Louis DN, Ramesh V, Gusella JF, Wiestler OD, von Deimling A (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–832

    PubMed  CAS  Google Scholar 

  33. Bouvier C, Liprandi A, Colin C, Giorgi R, Quilichini B, Metellus P, Figarella-Branger D (2005) Lack of alkaline phosphatase activity predicts meningioma recurrence. Am J Clin Pathol 124:252–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Urbschat, S. Wemmert, U. Bechtel, and U. Lindemann for expert technical assistance and helpful discussions. Financial support was provided by the BMBF (grant No.01GR0453 to JR) and HomFor (grant No. 68-06). The work at the Max-Planck-Institute for Informatics was performed in the context of the BioSapiens Network of Excellence (EU contact no. LSHG-CT-2003-503265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Ketter.

Additional information

R. Ketter and Y.-J. Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketter, R., Kim, YJ., Storck, S. et al. Hyperdiploidy defines a distinct cytogenetic entity of meningiomas. J Neurooncol 83, 213–221 (2007). https://doi.org/10.1007/s11060-006-9318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9318-7

Keywords

Navigation