Skip to main content
Log in

Flow over periodic hills: an experimental study

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers (\(\text{5,600} \le Re \le \text{37,000}\)). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for \(Re \ge \text{10,000}\). We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Notes

  1. Earlier works of Prandtl (1926), von Kármán (1930), Nikuradse (1932) and Nikuradse (1933) dealt with smooth and rough surfaces rather than the definition of wavy walls by Fromm (1923) and Hopf (1923).

  2. Denoted as ‘periodicity’ is the periodic behavior in the streamwise direction, whereas ‘homogeneity’ refers to the spanwise direction.

  3. \( \nu={\frac{1.78 \times 10^{-6}} {1+3.37 \times 10^{-2} T + 2.21 \times 10^{-4} T^2}} \left[{\frac{\hbox{m}^2}{{\rm s}}}\right], \hbox{with}\,T\, [^{\circ}\hbox{C}] .\)

  4. However, the discharge was continuously recorded by a magneto-inductive device. The signal was analyzed but fluctuations were not detected in the spectra.

  5. The method of determining the point of reattachment will be explained in Sect. 4.7.

  6. Temmerman (2004) compared LES with one and two periods and found differences in the point of reattachment of 0.05 hill heights.

  7. The measurements were only conducted at the left channel half such that genuine symmetry about the centerline has not been demonstrated.

References

  • Adams EW, Johnston JP (1988) Effects of the separating shear layer on the reattachment flow structure, part 2: reattachment length and wall shear stress. Exp Fluids 6:493–499

    Google Scholar 

  • Almeida GP, Durão DFG, Heitor MV (1993) Wake flows behind two dimensional model hills. Expl Thermal Fluid Sci 7:87–101

    Article  Google Scholar 

  • Armaly BF, Durst F, Pereira JCF, Schönung B (1983) Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech 127:473–496

    Article  Google Scholar 

  • Athanassiadou M, Castro I (2001) Neutral flow over a series of rough hills: a laboratory experiment. Boundary Layer Meteorol 101:1–30

    Article  Google Scholar 

  • Belcher SE, Newley TMJ, Hunt JCR (1993) The drag on an undulating surface induced by the flow of a turbulent boundary layer. J Fluid Mech 249:557–596

    Article  MATH  Google Scholar 

  • Breuer M, Peller N, Rapp C, Manhart M (2009) Flow over periodic hills-numerical and experimental study over a wide range of reynolds numbers. Comput Fluids 38(2):433–457

    Article  Google Scholar 

  • Buckles J, Hanratty TJ, Adrian RJ (1984) Turbulent flow over large-amplitude wavy surfaces. J Fluid Mech 140:27–44

    Article  Google Scholar 

  • Castro I, Haque A (1987) The structure of a turbulent shear layer bounding a separation region. J Fluid Mech 179:439–468

    Article  Google Scholar 

  • Dimaczek G, Kessler R, Martinuzzi R, Tropea C (1989) The flow over two-dimensional, surface mounted obstacles at high reynolds numbers. In: Proceedings of 7th symposium on turbulent shear flows. Stanford University, USA, pp 10.1.1–10.1.6

  • Eckelmann H (1997) Einführung in die Strömungsmesstechnik, Leitfaden der angewandten Mathematik und Mechanik, vol 74. Teubner, Stuttgart

  • Fore LB, Tung AT, Buchanan JR, Welch JW (2005) Nonlinear temporal filtering of time-resolved digital image velocimetry data. Exp Fluids 39:22–31

    Article  Google Scholar 

  • Fröhlich J, Mellen CP, Rodi W, Temmerman L, Leschziner M (2005) Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech 526:19–66

    Article  MATH  MathSciNet  Google Scholar 

  • Fromm K (1923) Strömungswiderstand in rauhen Rohren. Zeitung für angewandte Mathematik und Mechanik 3

  • Gong W, Ibbetson A (1989) A wind tunnel study of turbulent flow over model hills. Boundary Layer Meterol 49:113–148

    Article  Google Scholar 

  • Gong W, Taylor PA, Dörnbrack A (1996) Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J Fluid Mech 312:1–37

    Article  Google Scholar 

  • Günther A, v Rohr PR (2003) Large-scale structures in a developed flow over a wavy wall. J Fluid Mech 478:257–285

    Article  MATH  MathSciNet  Google Scholar 

  • Henn D, Sykes R (1999) Large-eddy simulation of flow over wavy surfaces. J Fluid Mech 383:75–112

    Article  MATH  Google Scholar 

  • Hopf L (1923) Die Messung der hydraulischen Rauhigkeit. Zeitung für angewandte Mathematik und Mechanik 3

  • Hudson JD, Dykhno L, Hanratty TJ (1996) Turbulence production in flow over a wavy wall. Exp Fluids 20:257–265

    Article  Google Scholar 

  • Hunt JCR, Snyder WH (1980) Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J Fluid Mech 96:671–704

    Article  Google Scholar 

  • Hunt JCR, Leibovich S, Richards KJ (1988) Turbulent shear flows over a low hills. Q J R Meteorol Soc 114:1435–1471

    Article  Google Scholar 

  • Jackson P, Hunt J (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101:929–955

    Article  Google Scholar 

  • Jakirlić S, Jester-Zürker R, Tropea C (2002) Report on 9th ercoftac/iahr/cost workshop on refined turbulence modelling. In: ERCOFTAC Bulletin, No. 55, Darmstadt University of Technology, pp 36–43

  • Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Tech 1:1202–1215

    Article  Google Scholar 

  • Kruse N, Kuhn S, von Rohr PR (2006) Wavy wall effects on turbulence production and large-scale modes. J Turbul 7(31):1–24

    MathSciNet  Google Scholar 

  • Kuhn S, Wagner C, von Rohr PR (2007) Influence of wavy surfaces on coherent structures in a turbulent flow. Exp Fluids 43:251–259

    Article  Google Scholar 

  • Manhart M (1998) Vortex shedding from a hemisphere in a turbulent boundary layer. Theor Comput Fluid Dyn 12(1):1–28

    Article  MATH  Google Scholar 

  • Manhart M, Friedrich R (2002) DNS of a turbulent boundary layer with separation. Int J Heat Fluid Flow 23(5):572–581

    Article  Google Scholar 

  • Manhart M, Rapp C, Peller N, Breuer M, Aybay O, Denev J, Falconi CJ (2009) Assessment of eddy resolving techniques for the flow over periodically arranged hills up to Re = 37,000. In: QLES 2009, Pisa, Italy

  • Mason PJ (1986) Flow over the summit of an isolated hill. Boundary Layer Meterol 37:385–405

    Article  Google Scholar 

  • Mellen CP, Fröhlich J, Rodi W (2000) Large-eddy simulation of the flow over periodic hills. In: 16th IMACS world congress, Lausanne, Switzerland

  • Motzfeld H (1937) Die turbulente Strömung an welligen wänden. Zeitschrift für angewandte Mathematik und Mechanik 17(4):193–212

    Article  MATH  Google Scholar 

  • Na Y, Moin P (1998) Direct numerical simulation of a separated turbulent boundary layer. J Fluid Mech 370:175–201

    Article  MATH  Google Scholar 

  • Nikuradse J (1932) Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forsch Arb Ing Wes 356

  • Nikuradse J (1933) Gesetzmäßigkeiten der turbulenten Strömung in rauhen Rohren. Technical report 361, VDI-Forschungsheft, Berlin

  • Patrick W (1987) Flowfield measurements in a separated and reattached flat plate turbulent boundary layer. NASA CR 4052

  • Peller N, Manhart M (2005) Turbulent channel flow with periodic hill constrictions. In: Arbeitsgemeinschaft Strömung mit Ablösung (STAB), Mitteilungen, pp 178–179

  • Peller N, Le Duc A, Tremblay F, Manhart M (2006) High-order stable interpolations for immersed boundary methods. Int J Num Methods Fluids (in press)

  • Prandtl L (1926) Ausgebildete Turbulenz. In: Verhandl. II. Intern. Kongr. für Techn. Mechanik, Zürich

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry. Experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  • Rapp C (2009) Experimentelle Studie der turbulenten Strömung über periodische Hügel. PhD thesis, Technische Universität München

  • Rapp C, Manhart M (2007) Experimental investigations on the turbulent flow over a periodic hill geometry. In: Friedrich R, Adams NA, Eaton JK, Humphrey JAC, Kasagi N, Leschziner MA (eds) Turbulence and shear flow phenomena, Garching, fifth international symposium, vol 2, pp 649–654

  • Rapp C, Pfleger F, Manhart M (2008) New experimental results for a LES Benchmark Case. In: Direct and large-eddy simulations 7, DLES, Trieste (in press)

  • Rodi W, Bonnin JC, Buchal T (1995) 1995 ERCOFTAC workshop on data bases and testing of calculation methods for turbulent flows

  • Schlichting H (1964) Grenzschicht-Theorie. Braun G., Göttingen

    Google Scholar 

  • Sykes RI (1980) An asymptotic theory of incompressible turbulent flow over a small hump. J Fluid Mech 101(647–670)

    Google Scholar 

  • Šarić S, Jakirlić S, Breuer M, Jaffrézic B, Deng G, Chikhaoui O, Fröhlich J, von Terzi D, Manhart M, Peller N (2007) Evaluation of detached eddy simulations for predicting the flow over periodic hills. In: CEMRACS proceedings 2005, computational aeroacoustics and CFD in turbulent flows, (Centre de Mathématique de Recherche Avance en Calcul Scientifique), EMS Publishing House, Marseille, France

  • Temmerman L (2004) Large eddy simulation of separating flow from curved surfaces. PhD thesis, University of London

  • Temmerman L, Leschziner MA (2001) Large eddy simulation of separated flow in a streamwise periodic channel constriction. In: Lindborg A E Johansson, Eaton J, Humphrey J, Kasagi N, Leschziner M, Sommerfeld M (eds) Turbulence and shear flow phenomena. Second international symposium. KTH, Stockholm, pp 399–404

  • Temmerman L, Leschziner MA, Mellen CP, Fröhlich J (2003) Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with periodic constrictions. Int J Heat Fluid Flow 24:157–180

    Article  Google Scholar 

  • von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr d Ges d Wiss Göttingen, p 58

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Article  Google Scholar 

  • Zeman O, Jensen NO (1987) Modification of turbulence characteristics in flow over hills. Q J R Meteorol Soc 113:55–80

    Article  Google Scholar 

  • Zilker DP, Hanratty TJ (1979) Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2 (separated flows). J Fluid Mech 90:257–271

    Article  Google Scholar 

  • Zilker DP, Cook GW, Hanratty TJ (1977) Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J Fluid Mech 82:29–51

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the generous support of the PIV system and the funding of the research position (MA-2062-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, C., Manhart, M. Flow over periodic hills: an experimental study. Exp Fluids 51, 247–269 (2011). https://doi.org/10.1007/s00348-011-1045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1045-y

Keywords

Navigation