Skip to main content
Log in

Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: rank-one actions on the centre

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The spectrum of a Gelfand pair of the form \({(K\ltimes N,K)}\), where N is a nilpotent group, can be embedded in a Euclidean space \({{\mathbb R}^d}\). The identification of the spherical transforms of K-invariant Schwartz functions on N with the restrictions to the spectrum of Schwartz functions on \({{\mathbb R}^d}\) has been proved already when N is a Heisenberg group and in the case where N = N 3,2 is the free two-step nilpotent Lie group with three generators, with K = SO3 (Astengo et al. in J Funct Anal 251:772–791, 2007; Astengo et al. in J Funct Anal 256:1565–1587, 2009; Fischer and Ricci in Ann Inst Fourier Gren 59:2143–2168, 2009). We prove that the same identification holds for all pairs in which the K-orbits in the centre of N are spheres. In the appendix, we produce bases of K-invariant polynomials on the Lie algebra \({{\mathfrak n}}\) of N for all Gelfand pairs \({(K\ltimes N,K)}\) in Vinberg’s list (Vinberg in Trans Moscow Math Soc 64:47–80, 2003; Yakimova in Transform Groups 11:305–335, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamovich, O.M., Golovina, E.O.: Simple linear Lie groups having a free algebra of invariants. Selecta Math. Sov. 3, 183–220 (1984); originally published in Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 3–41 (1979, in Russian)

  2. Astengo F., Di Blasio B., Ricci F.: Gelfand transforms of polyradial Schwartz functions on the Heisenberg group. J. Funct. Anal. 251, 772–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astengo F., Di Blasio B., Ricci F.: Gelfand pairs on the Heisenberg group and Schwartz functions. J. Funct. Anal. 256, 1565–1587 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson C., Jenkins J., Ratcliff G.: On Gelfand pairs associated with solvable Lie groups. Trans. Am. Math. Soc. 321, 85–116 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson C., Jenkins J., Ratcliff G.: The spherical transform of a Schwartz function on the Heisenberg group. J. Funct. Anal. 154, 379–423 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benson C., Ratcliff G.: Rationality of the generalized binomial coefficients for a multiplicity free action. J. Aust. Math. Soc. 68, 387–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benson C., Ratcliff G.: The space of bounded spherical functions on the free 2-step nilpotent Lie group. Transform. Groups 13, 243–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carcano G.: A commutativity condition for algebras of invariant functions. Boll. Un. Mat. Ital. 7, 1091–1105 (1987)

    MathSciNet  Google Scholar 

  9. Damek E., Ricci F.: Harmonic analysis on solvable extensions of H-type groups. J. Geom. Anal. 2, 213–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrari Ruffino F.: The topology of the spectrum for Gelfand pairs on Lie groups. Boll. Un. Mat. Ital. 10, 569–579 (2007)

    MathSciNet  Google Scholar 

  11. Fischer V., Ricci F.: Gelfand transforms of SO(3)-invariant Schwartz functions on the free nilpotent group N 3,2. Ann. Inst. Fourier Gren. 59, 2143–2168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Folland G., Stein E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton (1982)

    MATH  Google Scholar 

  13. Geller D.: Fourier analysis on the Heisenberg group. I. Schwartz space. J. Funct. Anal. 36, 205–254 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knop, F.: Some remarks on multiplicity free spaces. In: Broer, A. et al. (eds.) Representation Theories and Algebraic Geometry, NATO ASI Ser., Ser. C, Math. Phys. Sci., vol. 514, pp. 301–317. Kluwer, Dordrecht (1998)

  15. Kostant, B.: On the existence and irreducibility of certain series of representations. In: Gelfand, I.M. Lie Groups and their Representations, Wiley, New York (1975)

  16. Ludwig J.: Polynomial growth and ideals in group algebras. Man. Math. 30, 215–221 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mather J.: Differentiable invariants. Topology 16, 145–155 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moore C., Wolf J.: Square integrable representations of nilpotent groups. Trans. Am. Math. Soc. 185, 445–462 (1973)

    Article  MathSciNet  Google Scholar 

  19. Onishchik A.L., Vinberg E.B.: Lie groups and algebraic groups. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  20. Popov, V.L., Vinberg, E.B.: Invariant theory. In: Algebraic Geometry IV, Encyclopaedia Math. Sci., vol. 55, pp. 123–284. Springer, Berlin (1994)

  21. Schwarz G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwarz G.W.: Representations of simple Lie groups with regular rings of invariants. Invent. Math. 49, 167–191 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vinberg E.B.: Commutative homogeneous spaces and coisotropic actions. Russian Math. Surveys 56, 1–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vinberg E.B.: Commutative homogeneous spaces of Heisenberg type. Trans. Moscow Math. Soc. 64, 47–80 (2003)

    MathSciNet  Google Scholar 

  25. Wolf, J.: Harmonic Analysis on Commutative Spaces, Math. Surveys and Monographs vol. 142, Am. Math. Soc. (2007)

  26. Yakimova, O.: Gelfand pairs. Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2004, Bonner Mathematische Schriften, vol. 374 (2005)

  27. Yakimova O.: Principal Gelfand pairs. Transform. Groups 11, 305–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, V., Ricci, F. & Yakimova, O. Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: rank-one actions on the centre. Math. Z. 271, 221–255 (2012). https://doi.org/10.1007/s00209-011-0861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0861-3

Keywords

Mathematics Subject Classification (2000)

Navigation