Skip to main content
Log in

Incompressible Flows with Piecewise Constant Density

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the incompressible Navier–Stokes equations with variable density. The aim is to prove existence and uniqueness results in the case of discontinuous initial density. In dimension n = 2,3, assuming only that the initial density is bounded and bounded away from zero, and that the initial velocity is smooth enough, we get the local-in-time existence of unique solutions. Uniqueness holds in any dimension and for a wider class of velocity fields. In particular, all those results are true for piecewise constant densities with arbitrarily large jumps. Global results are established in dimension two if the density is close enough to a positive constant, and in n dimensions if, in addition, the initial velocity is small. The Lagrangian formulation for describing the flow plays a key role in the analysis that is proposed in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Rferences

  1. Abels H.: The initial-value problem for the Navier–Stokes equations with a free surface in L q-Sobolev spaces. Adv. Differ. Equ. 10(1), 45–64 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Ammar Khodja F., Santos M.M.: 2D density-dependent Leray problem with a discontinuous density. Methods Appl. Anal. 13(4), 321–335 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Antontsev S., Kazhikhov A., Monakhov V.: Boundary value problems in mechanics of nonhomogeneous fluids. Studies in Mathematics and its Applications Vol. 22. North-Holland, Amsterdam, 1990

  4. Archer A.J.: Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics. J. Chem. Phys. 130, 014509 (2009). doi:10.1063/1.3054633

  5. Besov O.V. I’lin V.P., Nikolskij S.M.: Integral Function Representation and Imbedding Theorem. Nauka, Moscow, 1975

  6. Cho Y., Kim H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. 59(4), 465–489 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Danchin R.: Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8, 333–381 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Danchin R.: Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differ. Equ. 9(3–4), 353–386 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Danchin R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. R. Soc. Edinb. Sect. A 133(6), 1311–1334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danchin R., Mucha P.B.: The divergence equation in rough spaces. J. Math. Anal. Appl. 386, 10–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Danchin R., Mucha P.B.: A Lagrangian approach for the incompressible Navier–Stokes equations with variable density. Commun. Pure Appl. Math. 65, 1458–1480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin R., Mucha P.B.: Divergence. Discrete Contin. Dyn. Syst. S (in press)

  13. Desjardins B.: Regularity results for two-dimensional flows of multiphase viscous fluids. Arch. Ration. Mech. Anal. 137, 135–158 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi G.: An introduction to the mathematical theory of the Navier–Stokes equations. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, Vol. 38. Springer, New York, 1994

  15. Germain P.: Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier–Stokes equation. J. Anal. Math. 105, 169–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoff D.: Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional compressible flow. SIAM J. Math. Anal. 37(6), 1742–1760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang J., Paicu M., Zhang P.: Global solutions to 2D inhomogeneous Navier–Stokes system with general velocity (preprint)

  19. Ku D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  20. Lions P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models. Oxford University Press, Oxford (1996)

    Google Scholar 

  21. Ladyzhenskaya O., Solonnikov V.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. J. Sov. Math. 9, 697–749 (1978)

    Article  MATH  Google Scholar 

  22. Liu Y., Zhang L., Wang X., Liu W.K.: Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Int. J. Numer. Methods Fluids 46(12), 1237–1252, (2004) (Special Issue: International Conference on Finite Element Methods in Fluids)

    Google Scholar 

  23. Maremonti P., Solonnikov V.A.: On nonstationary Stokes problem in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24(3), 395–449 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Mucha P.B.: On an estimate for the linearized compressible Navier–Stokes equations in the L p-framework. Colloq. Math. 87(2), 159–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mucha P.B.: Stability of nontrivial solutions of the Navier–Stokes system on the three dimensional torus, J. Differ. Equ. 172(2), 359–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mucha P.B., Zaja̧czkowski W.M.: On local existence of solutions of free boundary problem for incompressible viscous self-gravitating fluid motion. Applicationes Mathematicae 27(3), 319–333 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Mucha P.B., Zaja̧czkowski W.M.: On a L p-estimate for the linearized compressible Navier–Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186(2), 377–393 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Santos M.M.: Stationary solution of the Navier–Stokes equations in a 2D bounded domain for incompressible flow with discontinuous density. Z. Angew. Math. Phys. 53(4), 661–675 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shibata Y., Shimizu S.: On a resolvent estimate of the Stokes system in a half space arising from a free boundary problem for the Stokes equations. Math. Nachr. 282, 482–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simon J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solonnikov V.A.: On the nonstationary motion of isolated value of viscous incompressible fluid. Izv. AN SSSR 51(5), 1065–1087 (1987)

    Google Scholar 

  32. Tice I., Wang Y.: The viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. (2011, arXiv:1109.5657v1)

  33. Triebel H.: Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library Vol. 18. North-Holland, Amsterdam, 1978

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danchin, R., Mucha, P.B. Incompressible Flows with Piecewise Constant Density. Arch Rational Mech Anal 207, 991–1023 (2013). https://doi.org/10.1007/s00205-012-0586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0586-4

Keywords

Navigation