Skip to main content
Log in

Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The leading contributions from heavy new physics to Higgs processes can be captured in a model-independent way by dimension-six operators in an effective Lagrangian approach. We present a complete analysis of how these contributions affect Higgs couplings. Under certain well-motivated assumptions, we find that 8 CP-even plus 3 CP-odd Wilson coefficients parametrize the main impact in Higgs physics, as all other coefficients are constrained by non-Higgs SM measurements. We calculate the most relevant anomalous dimensions for these Wilson coefficients, which describe operator mixing from the heavy scale down to the electroweak scale. This allows us to find the leading-log corrections to the predictions for the Higgs couplings in specific models, such as the MSSM or composite Higgs, which we find to be significant in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Search for the Standard Model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  3. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, arXiv:1308.2803 [INSPIRE].

  5. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Elias-Miró, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy constraints on electroweak three gauge boson couplings, Phys. Lett. B 283 (1992) 353 [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  11. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Arzt, M. Einhorn and J. Wudka, Patterns of deviation from the Standard Model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].

  14. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE] and references therein.

  15. O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  16. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    ADS  Google Scholar 

  19. A. De Rújula, M. Gavela, P. Hernández and E. Masso, The selfcouplings of vector bosons: does LEP-1 obviate LEP-2?, Nucl. Phys. B 384 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  20. See for example A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  21. LEP, ALEPH, DELPHI, L3, OPAL and LEP TGC collaborations, A combination of preliminary results on gauge boson couplings measured by the LEP experiments, LEPEWWG/TGC/2003-01, CERN, Geneva Switzerland (2004).

  22. ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].

    ADS  Google Scholar 

  23. CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous WWγ and WWZ couplings, arXiv:1306.1126 [INSPIRE].

  24. For reviews see for example ATLAS and CMS collaborations, V. Lombardo, Diboson production cross section at LHC, talk at QCD Moriond, La Thuille Italy (2013) [arXiv:1305.3773] [INSPIRE].

  25. J. Stark, Electroweak physics, talk at EPS HEP 2013 conference, Stockholm Sweden July 2013.

  26. M. Antonelli et al., An evaluation of |V us | and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].

    Article  ADS  Google Scholar 

  27. CMS collaboration, Search for new physics in final states with a lepton and missing transverse energy in pp collisions at the LHC, Phys. Rev. D 87 (2013) 072005 [arXiv:1302.2812] [INSPIRE].

    ADS  Google Scholar 

  28. ATLAS collaboration, Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033, CERN, Geneva Switzerland (2013).

  29. CMS collaboration, LHC combination note: W helicities, CMS-PAS-TOP-12-025, CERN, Geneva Switzerland (2012).

  30. ATLAS collaboration, Search for \( t\overline{t}Z \) production in the three lepton final state with 4.7 fb−1 of \( \sqrt{s}=7 \) TeV pp collision data collected by the ATLAS detector, ATLAS-CONF-2012-126, CERN, Geneva Switzerland (2012).

  31. CMS collaboration, Measurement of associated production of vector bosons and \( t\overline{t} \) at \( \sqrt{s}=7 \) TeV, CMS-TOP-12-014, CERN, Geneva Switzerland (2013).

  32. N. Vignaroli, ΔF = 1 constraints on composite Higgs models with LR parity, Phys. Rev. D 86 (2012) 115011 [arXiv:1204.0478] [INSPIRE].

    ADS  Google Scholar 

  33. T. Corbett, O. Éboli, J. González-Fraile and M. González-García, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  34. S. Alam, S. Dawson and R. Szalapski, Low-energy constraints on new physics revisited, Phys. Rev. D 57 (1998) 1577 [hep-ph/9706542] [INSPIRE].

    ADS  Google Scholar 

  35. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  36. A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].

    ADS  Google Scholar 

  37. See for example R.S. Gupta, M. Montull and F. Riva, SUSY faces its Higgs couplings, JHEP 04 (2013) 132 [arXiv:1212.5240] [INSPIRE].

  38. M.B. Einhorn and J. Wudka, Effective β-functions for effective field theory, JHEP 08 (2001) 025 [hep-ph/0105035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Espinosa.

Additional information

ArXiv ePrint: 1308.1879

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias-Miró, J., Espinosa, J.R., Masso, E. et al. Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions. J. High Energ. Phys. 2013, 66 (2013). https://doi.org/10.1007/JHEP11(2013)066

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)066

Keywords

Navigation