Skip to main content
Log in

Fermion correlators in non-abelian holographic superconductors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These features are compared to similar ones observed in angle resolved photoemission experiments on high T c superconductors. Along the way we elucidate some properties of p-wave superconductors in AdS4 and discuss the construction of SO(4) superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  3. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].

    Article  Google Scholar 

  6. S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [SPIRES].

    Article  ADS  Google Scholar 

  7. F. Aprile and J.G. Russo, Models of holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [SPIRES].

    ADS  Google Scholar 

  8. S. Franco, A.M. Garcia-Garcia and D. Rodriguez-Gomez, A holographic approach to phase transitions, Phys. Rev. D 81 (2010) 041901 [arXiv:0911.1354] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  9. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  11. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  12. A. Damascelli, Z. Hussain and Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75 (2003) 473 [SPIRES].

    Article  ADS  Google Scholar 

  13. J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-dip-hump from holographic superconductivity, Phys. Rev. D 82 (2010) 026007 [arXiv:0911.2821] [SPIRES].

    ADS  Google Scholar 

  14. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ‘experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  ADS  Google Scholar 

  15. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].

    Article  ADS  Google Scholar 

  16. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  17. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  19. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [SPIRES].

    ADS  Google Scholar 

  20. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: holographic pion superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

  21. C.P. Herzog and S.S. Pufu, The second sound of SU(2), JHEP 04 (2009) 126 [arXiv:0902.0409] [SPIRES].

    Article  ADS  Google Scholar 

  22. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].

    ADS  Google Scholar 

  23. H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Superconducting coherence length and magnetic penetration depth of a p-wave holographic superconductor, Phys. Rev. D 81 (2010) 106001 [arXiv:0912.4928] [SPIRES].

    ADS  Google Scholar 

  24. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Yarom, Fourth sound of holographic superfluids, JHEP 07 (2009) 070 [arXiv:0903.1353] [SPIRES].

    Article  ADS  Google Scholar 

  26. G.K. Savvidy, Yang-Mills classical mechanics as a Kolmogorov k-system, Phys. Lett. B 130 (1983) 303 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. I. Bah, A. Faraggi, J.I. Jottar, R.G. Leigh and L.A. Pando Zayas, Fermions and D = 11 supergravity on squashed Sasaki-Einstein manifolds, arXiv:1008.1423 [SPIRES].

  28. I. Bah, A. Faraggi, J.I. Jottar and R.G. Leigh, Fermions and type IIB supergravity on squashed Sasaki-Einstein manifolds, arXiv:1009.1615 [SPIRES].

  29. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [SPIRES].

    Article  ADS  Google Scholar 

  33. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [SPIRES].

    Article  ADS  Google Scholar 

  34. B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. (Proc. Suppl.) 192-193 (2009) 193 [arXiv:0902.4010] [SPIRES].

    Article  ADS  Google Scholar 

  35. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  36. G.C. Giecold, Fermionic Schwinger-Keldysh propagators from AdS/CFT, JHEP 10 (2009) 057 [arXiv:0904.4869] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  38. W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. II: vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [SPIRES].

    ADS  Google Scholar 

  39. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  40. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  41. F. Bloch, Flux quantization and dimensionality, Phys. Rev. 166 (1968) 415.

    Article  ADS  Google Scholar 

  42. S.-C. Zhang, A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism, Science 275 (1997) 1089.

    Article  MathSciNet  Google Scholar 

  43. E. Demler, W. Hanke and S.-C. Zhang, SO(5) theory of antiferromagnetism and superconductivity, Rev. Mod. Phys. 76 (2004) 909 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Yarom.

Additional information

ArXiv ePrint:1002.4416

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubser, S.S., Rocha, F.D. & Yarom, A. Fermion correlators in non-abelian holographic superconductors. J. High Energ. Phys. 2010, 85 (2010). https://doi.org/10.1007/JHEP11(2010)085

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)085

Keywords

Navigation