Skip to main content
Log in

Baryon washout, electroweak phase transition, and perturbation theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-byorder in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [SPIRES].

    ADS  Google Scholar 

  2. J. Ambjorn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Lattice simulations of electroweak sphaleron transitions in real time, Phys. Lett. B 244 (1990) 479 [SPIRES].

    ADS  Google Scholar 

  3. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [SPIRES].

    Article  ADS  Google Scholar 

  4. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [SPIRES].

    Article  ADS  Google Scholar 

  5. F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [SPIRES].

    Article  ADS  Google Scholar 

  6. Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The endpoint of the first-order phase transition of the SU(2) gauge-Higgs model on a 4-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [SPIRES].

    ADS  Google Scholar 

  7. G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 0144503 [hep-ph/9805264] [SPIRES].

    ADS  Google Scholar 

  8. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    Google Scholar 

  9. M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [SPIRES].

  10. S.J. Huber, P. John and M.G. Schmidt, Bubble walls, CP-violation and electroweak baryogenesis in the MSSM, Eur. Phys. J. C 20 (2001) 695 [hep-ph/0101249] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Kang, P. Langacker, T.-j. Li and T. Liu, Electroweak baryogenesis in a supersymmetric U(1) -prime model, Phys. Rev. Lett. 94 (2005) 061801 [hep-ph/0402086] [SPIRES].

    Article  ADS  Google Scholar 

  13. D.J.H. Chung and A.J. Long, Electroweak Phase Transition in the munuSSM, Phys. Rev. D 81 (2010) 123531 [arXiv:1004.0942] [SPIRES].

    ADS  Google Scholar 

  14. K. Funakubo and E. Senaha, Electroweak phase transition, critical bubbles and sphaleron decoupling condition in the MSSM, Phys. Rev. D 79 (2009) 115024 [arXiv:0905.2022] [SPIRES].

    ADS  Google Scholar 

  15. C.-W. Chiang and E. Senaha, Electroweak phase transitions in the secluded U(1)-prime-extended MSSM, JHEP 06 (2010) 030 [arXiv:0912.5069] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs Phenomenology and the Electroweak Phase Transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [SPIRES].

    Article  ADS  Google Scholar 

  17. S.W. Ham and S.K. Oh, Electroweak phase transition and Higgs self-couplings in the two-Higgs-doublet model, hep-ph/0502116 [SPIRES].

  18. S.W. Ham, S.-A. Shim and S.K. Oh, Electroweak phase transition in an extension of the standard model with scalar color octet, Phys. Rev. D 81 (2010) 055015 [arXiv:1002.0237] [SPIRES].

    ADS  Google Scholar 

  19. M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [SPIRES].

    Article  ADS  Google Scholar 

  20. F. Csikor et al., Electroweak phase transition in the MSSM: 4-dimensional lattice simulations, Phys. Rev. Lett. 85 (2000) 932 [hep-ph/0001087] [SPIRES].

    Article  ADS  Google Scholar 

  21. G.D. Moore and M. Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 02 (2011) 105 [arXiv:1011.1167] [SPIRES].

    Article  ADS  Google Scholar 

  22. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical re actions, Physica 7 (1940) 284 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact Computation Of The Small Fluctuation Determinant Around A Sphaleron, Phys. Rev. D 42 (1990) 2127 [SPIRES].

    ADS  Google Scholar 

  24. J. Baacke and S. Junker, Quantum fluctuations around the electroweak sphaleron, Phys. Rev. D 49 (1994) 2055 [hep-ph/9308310] [SPIRES].

    ADS  Google Scholar 

  25. J. Baacke and S. Junker, Quantum fluctuations of the electroweak sphaleron: Erratum and addendum, Phys. Rev. D 50 (1994) 4227 [hep-th/9402078] [SPIRES].

    ADS  Google Scholar 

  26. L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [SPIRES].

    ADS  Google Scholar 

  27. N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [SPIRES].

    Article  ADS  Google Scholar 

  28. M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Dine, P. Huet, R.L. Singleton, Jr and L. Susskind, Creating the baryon asymmetry at the electroweak phase transition, Phys. Lett. B 257 (1991) 351 [SPIRES].

    ADS  Google Scholar 

  30. D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [SPIRES].

    Article  ADS  Google Scholar 

  31. S. Weinberg, Perturbative Calculations of Symmetry Breaking, Phys. Rev. D 7 (1973) 2887 [SPIRES].

    ADS  Google Scholar 

  32. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [SPIRES].

    ADS  Google Scholar 

  33. L. Dolan and R. Jackiw, Gauge invariant signal for gauge symmetry breaking, Phys. Rev. D 9 (1974) 2904 [SPIRES].

    ADS  Google Scholar 

  34. R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [SPIRES].

    ADS  Google Scholar 

  35. C. Delaunay, C. Grojean and J.D. Wells, Dynamics of Non-renormalizable Electroweak Symmetry Breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [SPIRES].

    Article  ADS  Google Scholar 

  36. C.W. Bernard, Feynman Rules for Gauge Theories at Finite Temperature, Phys. Rev. D 9 (1974) 3312 [SPIRES].

    ADS  Google Scholar 

  37. G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [SPIRES].

    ADS  Google Scholar 

  38. E. Braaten and R.D. Pisarski, Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD, Phys. Rev. Lett. 64 (1990) 1338 [SPIRES].

    Article  ADS  Google Scholar 

  39. G. Thompson and H.-L. Yu, Gauge Covariance Of The Effective Potential, Phys. Rev. D 31 (1985) 2141 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [hep-ph/9411252] [SPIRES].

    ADS  Google Scholar 

  41. A.D. Linde, Phase Transitions in Gauge Theories and Cosmology, Rept. Prog. Phys. 42 (1979) 389 [SPIRES].

    Article  ADS  Google Scholar 

  42. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3 − D physics and the electroweak phase transition: Perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [SPIRES].

    Article  ADS  Google Scholar 

  44. A. Jakovac and A. Patkos, Finite temperature reduction of the SU(2) Higgs model with complete static background, Phys. Lett. B 334 (1994) 391 [hep-ph/9405424] [SPIRES].

    ADS  Google Scholar 

  45. Z. Fodor and A. Hebecker, Finite temperature effective potential to order g 4 , λ2 and the electroweak phase transition, Nucl. Phys. B 432 (1994) 127 [hep-ph/9403219] [SPIRES].

    Article  ADS  Google Scholar 

  46. P.B. Arnold and L.D. McLerran, Sphalerons, Small Fluctuations and Baryon Number Violation in Electroweak Theory, Phys. Rev. D 36 (1987) 581 [SPIRES].

    ADS  Google Scholar 

  47. L. Carson and L.D. McLerran, Approximate computation of the small-fluctuation determinant around a sphaleron, Phys. Rev. D 41 (1990) 647 [SPIRES].

    ADS  Google Scholar 

  48. F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [SPIRES].

    ADS  Google Scholar 

  49. A. Strumia and N. Tetradis, A consistent calculation of bubble-nucleation rates, Nucl. Phys. B 542 (1999) 719 [hep-ph/9806453] [SPIRES].

    Article  ADS  Google Scholar 

  50. V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [SPIRES].

    Article  ADS  Google Scholar 

  51. F. Csikor, Z. Fodor and J. Heitger, Where does the hot electroweak phase transition end?, Nucl. Phys. Proc. Suppl. 73 (1999) 659 [hep-ph/9809293] [SPIRES].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren H. Patel.

Additional information

ArXiv ePrint: 1101.4665

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H.H., Ramsey-Musolf, M.J. Baryon washout, electroweak phase transition, and perturbation theory. J. High Energ. Phys. 2011, 29 (2011). https://doi.org/10.1007/JHEP07(2011)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)029

Keywords

Navigation