Skip to main content
Log in

Renormalization group running of dimension-six sources of parity and time-reversal violation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a systematic study of flavor-diagonal parity- and time-reversal-violating operators of dimension six which could arise from physics beyond the SM. We begin at the unknown high-energy scale where these operators originate. At this scale the operators are constrained by gauge invariance which has important consequences for the form of effective operators at lower energies. In particular for the four-quark operators. We calculate one-loop QCD and, when necessary, electroweak corrections to the operators and evolve them down to the electroweak scale and subsequently to hadronic scales. We find that for most operators QCD corrections are not particularly significant. We derive a set of operators at low energy which is expected to dominate hadronic and nuclear EDMs due to physics beyond the SM and obtain quantitative relations between these operators and the original dimension-six operators at the high-energy scale. We use the limit on the neutron EDM to set bounds on the dimension-six operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].

  4. R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].

  5. C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

    Article  ADS  Google Scholar 

  6. RD.. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  7. O. Naviliat-Cuncic and R.G.E. Timmermans, Electric dipole moments: flavor-diagonal cp violation, Compt. Rend. Phys. 13 (2012) 168.

    Article  ADS  Google Scholar 

  8. T.M. Ito, Plans for a neutron EDM experiment at SNS, J. Phys. Conf. Ser. 69 (2007) 012037 [nucl-ex/0702024] [INSPIRE].

    Article  ADS  Google Scholar 

  9. CryoEDM collaboration, M. van der Grinten et al., CryoEDM: a cryogenic experiment to measure the neutron electric dipole moment, Nucl. Instrum. Meth. A 611 (2009) 129 [INSPIRE].

    ADS  Google Scholar 

  10. I. Altarev et al., Towards a new measurement of the neutron electric dipole moment, Nucl. Instrum. Meth. A 611 (2009) 133 [INSPIRE].

    ADS  Google Scholar 

  11. W. Griffith et al., Improved limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].

    Article  ADS  Google Scholar 

  12. V.F. Dmitriev and R.A. Sen’kov, Schiff moment of the mercury nucleus and the proton dipole moment, Phys. Rev. Lett. 91 (2003) 212303 [nucl-th/0306050] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F.J.M. Farley et al., A New method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93 (2004) 052001 [hep-ex/0307006] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y.F. Orlov, W.M. Morse and Y.K. Semertzidis, Resonance method of electric-dipole-moment measurements in storage rings, Phys. Rev. Lett. 96 (2006) 214802 [hep-ex/0605022] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.J.G. Onderwater, Search for EDMs using storage rings, J. Phys. Conf. Ser. 295 (2011) 012008 [INSPIRE].

    Article  ADS  Google Scholar 

  16. Storage Ring EDM collaboration, Y.K. Semertzidis, A Storage Ring proton electric dipole moment experiment: most sensitive experiment to CP-violation beyond the Standard Model, arXiv:1110.3378 [INSPIRE].

  17. C.J.G. Onderwater, Search for electric dipole moments at storage rings, arXiv:1204.2512 [INSPIRE].

  18. J. Pretz, Measurement of permanent electric dipole moments of charged hadrons in storage rings, Hyperfine Interactions 214 (2013), no. 1-3 111–117 [arXiv:1301.2937] [INSPIRE].

    Article  ADS  Google Scholar 

  19. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. De Rujula, M.B. Gavela, O. Pene and F.J. Vegas, Signets of CP-violation, Nucl. Phys. B 357 (1991) 311 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.J. Ramsey-Musolf and S. Su, Low energy precision test of supersymmetry, Phys. Rept. 456 (2008) 1 [hep-ph/0612057] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Wilczek and A. Zee, ΔI = 1/2 rule and right-handed currents: heavy quark expansion and limitation on Zweigs rule, Phys. Rev. D 15 (1977) 2660 [INSPIRE].

    ADS  Google Scholar 

  25. E. Braaten, C.-S. Li and T.-C. Yuan, The evolution of Weinbergs gluonic CP-violation operator, Phys. Rev. Lett. 64 (1990) 1709 [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].

  27. H. An, X. Ji and F. Xu, P-odd and CP-odd four-quark contributions to neutron EDM, JHEP 02 (2010) 043 [arXiv:0908.2420] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Hisano, K. Tsumura and M.J.S. Yang, QCD corrections to neutron electric dipole moment from dimension-six four-quark operators, Phys. Lett. B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE].

    ADS  Google Scholar 

  29. O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE].

    ADS  Google Scholar 

  30. J. de Vries, R.G.R. Timmermans, E. Mereghetti and U. van Kolck, The nucleon electric dipole form factor from dimension-six time-reversal violation, Phys. Lett. B 695 (2011) 268 [arXiv:1006.2304] [INSPIRE].

    ADS  Google Scholar 

  31. S. Narison, A fresh look into the neutron EDM and magnetic susceptibility, Phys. Lett. B 666 (2008) 455 [arXiv:0806.2618] [INSPIRE].

    ADS  Google Scholar 

  32. K. Ottnad, B. Kubis, U.-G. Meissner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981] [INSPIRE].

    ADS  Google Scholar 

  33. E. Mereghetti, J. de Vries, W. Hockings, C. Maekawa and U. van Kolck, The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order, Phys. Lett. B 696 (2011) 97 [arXiv:1010.4078] [INSPIRE].

    ADS  Google Scholar 

  34. J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, Parity- and time-reversal-violating form factors of the deuteron, Phys. Rev. Lett. 107 (2011) 091804 [arXiv:1102.4068] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. de Vries et al., Electric dipole moments of light nuclei from chiral effective field theory, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604] [INSPIRE].

    ADS  Google Scholar 

  36. J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, The effective chiral lagrangian from dimension-six parity and time-reversal violation, arXiv:1212.0990 [INSPIRE].

  37. A.V. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  38. W. Fischler, S. Paban and S.D. Thomas, Bounds on microscopic physics from P and T violation in atoms and molecules, Phys. Lett. B 289 (1992) 373 [hep-ph/9205233] [INSPIRE].

    ADS  Google Scholar 

  39. J. Bsaisou et al., The electric dipole moment of the deuteron from the QCD θ-term, Eur. Phys. J. A 31 (2013) 49 [arXiv:1209.6306] [INSPIRE].

    Google Scholar 

  40. C.-P. Liu and R. Timmermans, Time-reversal violation in threshold vector-n vector-p scattering, Phys. Lett. B 634 (2006) 488 [nucl-th/0602010] [INSPIRE].

    ADS  Google Scholar 

  41. Y.-H. Song, R. Lazauskas and V. Gudkov, Time reversal invariance violation in neutron deuteron scattering, Phys. Rev. C 83 (2011) 065503 [arXiv:1104.3051] [INSPIRE].

    ADS  Google Scholar 

  42. E. Shintani et al., Neutron electric dipole moment from lattice QCD, Phys. Rev. D 72 (2005) 014504 [hep-lat/0505022] [INSPIRE].

    ADS  Google Scholar 

  43. F. Berruto, T. Blum, K. Orginos and A. Soni, Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions, Phys. Rev. D 73 (2006) 054509 [hep-lat/0512004] [INSPIRE].

    ADS  Google Scholar 

  44. E. Shintani, S. Aoki and Y. Kuramashi, Full QCD calculation of neutron electric dipole moment with the external electric field method, Phys. Rev. D 78 (2008) 014503 [arXiv:0803.0797] [INSPIRE].

    ADS  Google Scholar 

  45. F.-K. Guo and U.-G. Meissner, Baryon electric dipole moments from strong CP-violation, JHEP 12 (2012) 097 [arXiv:1210.5887] [INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Bhattacharya, V. Cirigliano and R. Gupta, Neutron electric dipole moment from beyond the standard model, PoS(LATTICE 2012)179.

  47. E. Shintani, Lattice calculation of neutron and proton EDM in full QCD, talk given at the 10th Quark Confinement and the Hadron Spectrum, October 8–12, Garching, Germany (2012).

  48. E. Braaten, C.S. Li and T.C. Yuan, The gluon color-electric dipole moment and its anomalous dimension, Phys. Rev. D 42 (1990) 276 [INSPIRE].

    ADS  Google Scholar 

  49. J. Ng and S. Tulin, D versus d: CP-violation in β decay and electric dipole moments, Phys. Rev. D 85 (2012) 033001 [arXiv:1111.0649] [INSPIRE].

    ADS  Google Scholar 

  50. K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  51. D.B. Kaplan and A. Manohar, Strange matrix elements in the proton from neutral current experiments, Nucl. Phys. B 310 (1988) 527 [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(h> γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

    Google Scholar 

  54. D. Chang, X.-G. He, W.-Y. Keung, B. McKellar and D. Wyler, Neutron electric dipole moment due to Higgs exchange in left-right symmetric models, Phys. Rev. D 46 (1992) 3876 [hep-ph/9209284] [INSPIRE].

    ADS  Google Scholar 

  55. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  56. Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F. Xu, H. An and X. Ji, Neutron electric dipole moment constraint on scale of minimal left-right symmetric Model, JHEP 03 (2010) 088 [arXiv:0910.2265] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Weinberg, The quantum theory of fields, volume 2, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  59. V. Bernard, N. Kaiser and U.G. Meissner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 4 (1995) 193 [hep-ph/9501384] [INSPIRE].

    ADS  Google Scholar 

  60. E. Mereghetti, W. Hockings and U. van Kolck, The effective chiral lagrangian from the theta term, Annals Phys. 325 (2010) 2363 [arXiv:1002.2391] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. E.E. Jenkins and A.V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett. B 255 (1991) 558 [INSPIRE].

    ADS  Google Scholar 

  62. V. Bernard, N. Kaiser, J. Kambor and U.G. Meissner, Chiral structure of the nucleon, Nucl. Phys. B 388 (1992) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  63. C. Dib et al., The neutron electric dipole form-factor in the perturbative chiral quark model, J. Phys. G 32 (2006) 547 [hep-ph/0601144] [INSPIRE].

    ADS  Google Scholar 

  64. M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett. B 530 (2002) 123 [hep-ph/0109044] [INSPIRE].

    ADS  Google Scholar 

  65. D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].

    ADS  Google Scholar 

  66. C. Arzt, M. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

    Article  ADS  Google Scholar 

  67. E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].

  68. F. Boudjema, K. Hagiwara, C. Hamzaoui and K. Numata, Anomalous moments of quarks and leptons from nonstandard W W gamma couplings, Phys. Rev. D 43 (1991) 2223 [INSPIRE].

    ADS  Google Scholar 

  69. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  70. J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, γ ray lines and EDMs, arXiv:1301.2597 [INSPIRE].

  71. DELPHI collaboration, J. Abdallah et al., Study of W boson polarisations and triple gauge boson couplings in the reaction e + e W + W at LEP 2, Eur. Phys. J. C 54 (2008) 345 [arXiv:0801.1235] [INSPIRE].

    Article  ADS  Google Scholar 

  72. D0 collaboration, S. Abachi et al., Limits on anomalous WWγ couplings from \( p\overline{p}\to W\gamma +X \) events at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 78 (1997) 3634 [hep-ex/9612002] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J.J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dekens.

Additional information

ArXiv ePrint: 1303.3156

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekens, W., de Vries, J. Renormalization group running of dimension-six sources of parity and time-reversal violation. J. High Energ. Phys. 2013, 149 (2013). https://doi.org/10.1007/JHEP05(2013)149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)149

Keywords

Navigation