Skip to main content
Log in

IIB black hole horizons with five-form flux and KT geometry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the near horizon geometry of IIB supergravity black holes with non-vanishing 5-form flux preserving at least two supersymmetries. We demonstrate that there are three classes of solutions distinguished by the choice of Killing spinors. We find that the spatial horizon sections of the class of solutions with an SU(4) invariant pure Killing spinor are hermitian manifolds and admit a hidden Kähler with torsion (KT) geometry compatible with the SU(4) structure. Moreover the Bianchi identity of the 5-form, which also implies the field equations, can be expressed in terms of the torsion \( d\left( {\omega \wedge H} \right) = \partial \bar{\partial }{\omega^2} = 0 \), where ω is a Hermitian form. We give several examples of near horizon geometries which include group manifolds, group fibrations over KT manifolds and uplifted geometries of lower dimensional black holes. Furthermore, we show that the class of solutions associated with a Spin(7) invariant spinor is locally a product \( {\mathbb{R}^{1,1}} \times \mathcal{S} \), where \( \mathcal{S} \) is a holonomy Spin(7) manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  2. B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331 [SPIRES].

    Article  ADS  Google Scholar 

  3. S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [SPIRES].

    Article  ADS  Google Scholar 

  5. W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.O. Mazur, Proof of Uniqueness of the Kerr-Newman Black Hole Solution, J. Phys. A 15 (1982) 3173 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. D. Robinson, Four decades of black hole uniqueness theorems, in The Kerr spacetime: Rotating black holes in General Relativity, D.L. Wiltshire, M. Visser and S. M. Scott eds., Cambridge Univ. Press, Cambridge U.K. (2009).

    Google Scholar 

  8. H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [hep-th/0211290] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and non-uniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Rogatko, Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions, Phys. Rev. D 67 (2003) 084025 [hep-th/0302091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. M. Rogatko, Classification of static charged black holes in higher dimensions, Phys. Rev. D 73 (2006) 124027 [hep-th/0606116] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES];

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Gutowski and G. Papadopoulos, Heterotic Black Horizons, JHEP 07 (2010) 011 [arXiv:0912.3472] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Gutowski and G. Papadopoulos, Heterotic horizons, Monge-Ampere equation and del Pezzo surfaces, JHEP 10 (2010) 084 [arXiv:1003.2864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I backgrounds, JHEP 08 (2007) 074 [hep-th/0703143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav. 27 (2010) 125008 [arXiv:0909.2870] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.H. Schwarz and P.C. West, Symmetries and Transformations of Chiral N = 2 D = 10 Supergravity, Phys. Lett. B 126 (1983) 301 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [SPIRES].

    Article  ADS  Google Scholar 

  23. P.S. Howe and P.C. West, The Complete N = 2, D = 10 Supergravity, Nucl. Phys. B 238 (1984) 181 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. U. Gran, J. Gutowski and G. Papadopoulos, The spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 22 (2005) 2453 [hep-th/0501177] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  25. U. Gran, J. Gutowski and G. Papadopoulos, The G 2 spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 23 (2006) 143 [hep-th/0505074] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, N = 31 is not IIB, JHEP 02 (2007) 044 [hep-th/0606049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, IIB solutions with N > 28 Killing spinors are maximally supersymmetric, JHEP 12 (2007) 070 [arXiv:0710.1829] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. U. Gran, J. Gutowski and G. Papadopoulos, Classification of IIB backgrounds with 28 supersymmetries, JHEP 01 (2010) 044 [arXiv:0902.3642] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.M. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten-and eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.J. Duff, M-theory on manifolds of G 2 holonomy: The first twenty years, hep-th/0201062 [SPIRES].

  31. J.M. Figueroa-O’Farrill, P. Meessen and S. Philip, Supersymmetry and homogeneity of M-theory backgrounds, Class. Quant. Grav. 22 (2005) 207 [hep-th/0409170] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. U. Gran, J. Gutowski and G. Papadopoulos, IIB backgrounds with five-form flux, Nucl. Phys. B 798 (2008) 36 [arXiv:0705.2208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. P.S. Howe and G. Papadopoulos, Twistor spaces for HKT manifolds, Phys. Lett. B 379 (1996) 80 [hep-th/9602108] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [SPIRES].

    Article  ADS  Google Scholar 

  37. H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric anti-de Sitter black rings exist?, JHEP 02 (2007) 026 [hep-th/0611351] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Gauduchon, Le théorème de l’ excentricite’ nulle (in French), C.R. Acad. Sci. Paris A 285 (1977) 387.

    MathSciNet  Google Scholar 

  39. J. Jost and S.T. Yau, A non-linear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993) 221 [Corrigendum 177 (1994) 307].

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Fino and L. Ugarte, On generalized Gauduchon metrics, arXiv:1103.1033.

  41. H. Friedrich, I. Racz and R.M. Wald, On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon, Commun. Math. Phys. 204 (1999) 691 [gr-qc/9811021] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. J. Gutowski and G. Papadopoulos, Topology of supersymmetric N = 1, D = 4 supergravity horizons, JHEP 11 (2010) 114 [arXiv:1006.4369] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. S.J. Gates, Jr., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [SPIRES].

    Article  ADS  Google Scholar 

  44. P.S. Howe and G. Sierra, Two-dimensional Supersymmetric Nonlinear Sigma Models With Torsion, Phys. Lett. B 148 (1984) 451 [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  45. P.S. Howe and G. Papadopoulos, Further Remarks On The Geometry Of Two-dimensional Nonlinear σ Models, Class. Quant. Grav. 5 (1988) 1647 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. G. Grantcharov and Y.S. Poon, Geometry of hyper-Kähler connections with torsion, Commun. Math. Phys. 213 (2000) 19 [math/9908015].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J. Streets and G. Tian, A parabolic flow of pluriclosed metrics, arXiv:0903.4418.

  48. G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Ivanov and G. Papadopoulos, A no-go theorem for string warped compactifications, Phys. Lett. B 497 (2001) 309 [hep-th/0008232] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Class. Quant. Grav. 18 (2001) 1089 [math/0010038].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G 2 structures, math/0202282.

  52. A. Fino, M. Parton and S. Salamon, Families of strong KT structures in six dimensions, math/0209259.

  53. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D. Grantcharov, G. Grantcharov and Y.S. Poon, Calabi-Yau Connections with Torsion on Toric Bundles, math/0306207.

  56. J.-X. Fu, L.-S. Tseng and S.-T. Yau, Local Heterotic Torsional Models, Commun. Math. Phys. 289 (2009) 1151 [arXiv:0806.2392] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [SPIRES].

    MathSciNet  Google Scholar 

  58. P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Extended Supersymmetric σ-models on Group Manifolds. 1. The Complex Structures, Nucl. Phys. B 308 (1988) 662 [SPIRES].

    Article  ADS  Google Scholar 

  59. G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich, Birkhauser Verlag, Basel Switzerland (2000).

    Book  MATH  Google Scholar 

  60. B. de Wit and P. van Nieuwenhuizen, Rigidly And Locally Supersymmetric Two-Dimensional Nonlinea σ-models With Torsion, Nucl. Phys. B 312 (1989) 58 [SPIRES].

    Article  ADS  Google Scholar 

  61. G.W. Delius, M. Roček, A. Sevrin and P. van Nieuwenhuizen, Supersymmetric σ-models With Nonvanishing Nijenhuis Tensor And Their Operator Product Expansion, Nucl. Phys. B 324 (1989) 523 [SPIRES].

    Article  ADS  Google Scholar 

  62. T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303 [math/0102142].

    MathSciNet  MATH  Google Scholar 

  63. T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G 2 -manifolds, math/0112201.

  64. P.S. Howe, A. Opfermann and G. Papadopoulos, Twistor spaces for QKT manifolds, Commun. Math. Phys. 197 (1998) 713 [hep-th/9710072] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7) manifolds, math/0111216.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gutowski.

Additional information

ArXiv ePrint: 1101.1247

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gran, U., Gutowski, J. & Papadopoulos, G. IIB black hole horizons with five-form flux and KT geometry. J. High Energ. Phys. 2011, 50 (2011). https://doi.org/10.1007/JHEP05(2011)050

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)050

Keywords

Navigation