Skip to main content
Log in

Nonstandard integration theory in topological vector lattices

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper develops a Daniell-Stone integration theory in topological vector lattices. Starting with an internal, vector valued, positive linear functionalI on an internal lattice of vector valued functions, we produce a nonstandard hull valued integralJ satisfying the monotone convergence theorem. Nonstandard hulls form a natural extension of infinite dimensional spaces and are equivalent to Banach space ultrapower constructions. The first application of our integral is a construction of Banach limits for bounded, vector valued sequences. The second example yields an integral representation for bounded and quasibounded harmonic functions similar to that of the Martin boundary. The third application uses our general integral to extend the Bochner integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Fenstad, J. E., Høegh-Krohn, R., Lindstrøm, T.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Orlando: Academic Press. 1986.

    Google Scholar 

  2. Anderson, R. A.: A nonstandard representation of Brownian motion and Itô-integration. Israel J. Math.15, 15–46 (1976).

    Google Scholar 

  3. Anderson, R. M., Rashid, S.: A nonstandard characterization of weak convergence. Proc. Amer. Math. Soc.69, 327–332 (1978).

    Google Scholar 

  4. Bauer, H.: Harmonische Räume und ihre Potential Theorie. Berlin: Springer, 1966.

    Google Scholar 

  5. Brelot, M.: Lectures on Potential Theory. Bombay: Tata Institute. 1961.

    Google Scholar 

  6. Capiński, M., Cutland, N.: Stochastic Navier-Stokes equations. Acta Applicandae Math.25, 59–85 (1991).

    Google Scholar 

  7. Henson, C. W., Moore, L. C.: The nonstandard theory of topological vector spaces. Trans. Amer. Math. Soc.172, 405–435 (1972).

    Google Scholar 

  8. Hurd, A. E., Loeb, P. A.: An Introduction to Nonstandard Real Analysis. Orlando: Academic Press. 1985.

    Google Scholar 

  9. Keisler, H. J.: Infinitesimals in probability theory. In: Nonstandard Analysis and its Applications (ed. N. Cutland) pp. 106–139 Cambridge: Univ. Press. (1988).

    Google Scholar 

  10. Kluvanec, I.: Intégrale vectorielle de Daniell. Mat.-Fyz Casopis Sloven. Acad. Vied15, (1965).

  11. Loeb, P. A.: A combinatorial analog of Lyapunov's Theorem for infinitesimally generated atomic vector measures. Proc. Amer. Math. Soc.39, 585–586 (1973).

    Google Scholar 

  12. Loeb, P. A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc.211, 113–122 (1975).

    Google Scholar 

  13. Loeb, P. A.: Applications of nonstandard analysis to ideal boundaries in potential theory. Israel J. Math.25, 154–187 (1976).

    Google Scholar 

  14. Loeb, P. A.: A regular metrizable boundary for solutions of elliptic and parabolic differential equations. Math. Ann.251, 43–50 (1980).

    Google Scholar 

  15. Loeb, P. A.: A functional approach to nonstandard measure theory. Contemporary Math.26, 251–261 (1984).

    Google Scholar 

  16. Loeb, P. A.: A lattice formulation of real and vector valued integrals. In: Nonstandard Analysis and its Applications (ed. N. Cutland) pp. 221–236. Cambridge: Univ. Press. 1988.

    Google Scholar 

  17. Loeb, P. A., Osswald, H.: Refining the local uniform convergence topology. In: Classical and Modern Potential Theory and Applications. (ed. K. GowriSankaran et al.) pp. 315–316 Australia: Kluwer Academic Publishers. 1994.

    Google Scholar 

  18. Luxemburg, W. A. J.: A general theory of monads. In: Applications of Model Theory to Algebra, Analysis and Probability, 18–86, New York: Hold, Rinehart and Winston. 1969.

    Google Scholar 

  19. Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces. Amsterdam: North Holland. 1971.

    Google Scholar 

  20. Osswald, H., Sun, Y.: On the extension of vector valued Loeb measures. Proc. Amer. Math. Soc.111, 663–675 (1991).

    Google Scholar 

  21. Osswald, H.: Vector valued measures on Loeb spaces and the Lewis integral. Math. Scand,68, 247–268 (1991).

    Google Scholar 

  22. Peressini, A. L.: Ordered Topological Vector Spaces. New York: Harper & Row. (1976).

    Google Scholar 

  23. Robinson, A.: On generalized limits and linear functionals. Pacific J. Math.14, 269–283 (1964).

    Google Scholar 

  24. Royden, H. L.: Real Analysis. 3rd edn. New York: Macmillan. 1988.

    Google Scholar 

  25. Sun, Y.: On the theory of vector valued Loeb measures and integration. J. Funct. Anal.104, 327–362 (1992).

    Google Scholar 

  26. Sun, Y.: Integration of Correspondences on Loeb Spaces. Trans. Amer. Math. Soc.349, 129–153 (1997).

    Google Scholar 

  27. Wong, Y. C., Ng, K. F.: Partially Ordered Topological Vector Spaces. Oxford: Clarendon Press. 1973.

    Google Scholar 

  28. Zimmer, B.: An extension of the Bochner Integral generalizing the Loeb-Osswald Integral. Math. Proc. Comb. Phil. Soc. To appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author's work was supported by National Science Foundation grant DMS 92-01494

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeb, P.A., Osswald, H. Nonstandard integration theory in topological vector lattices. Monatshefte für Mathematik 124, 53–82 (1997). https://doi.org/10.1007/BF01320737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320737

1991 Mathematics Subject Classification

Key words

Navigation