Skip to main content

Efficient Storage and Decoding of SURF Feature Points

  • Conference paper
Advances in Multimedia Modeling (MMM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7131))

Included in the following conference series:

Abstract

Practical use of SURF feature points in large-scale indexing and retrieval engines requires an efficient means for storing and decoding these features. This paper investigates several methods for compression and storage of SURF feature points, considering both storage consumption and disk-read efficiency. We compare each scheme with a baseline plain-text encoding scheme as used by many existing SURF implementations. Our final proposed scheme significantly reduces both the time required to load and decode feature points, and the space required to store them on disk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Speeded up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Google Scholar 

  2. Chandrasekhar, V., Takacs, G., Chen, D., Tsai, S., Grzeszczuk, R., Girod, B.: Chog: Compressed histogram of gradients a low bit-rate feature descriptor. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2504–2511 (2009)

    Google Scholar 

  3. Chandrasekhar, V., Takacs, G., Chen, D., Tsai, S.S., Singh, J., Girod, B.: Transform coding of feature descriptors. In: Visual Communication and Image Processing (2009)

    Google Scholar 

  4. Gammeter, S., Gassmann, A., Bossard, L., Quack, T., Van Gool, L.: Server-side object recognition and client-side object tracking for mobile augmented reality. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2010), pp. 1–8 (2010)

    Google Scholar 

  5. Huffman, D.: A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  6. Jègou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. International Journal of Computer Vision 87, 316–336 (2010)

    Article  Google Scholar 

  7. Jègou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 117–128 (2011)

    Article  Google Scholar 

  8. Jègou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3304–3311 (2010)

    Google Scholar 

  9. Joly, A., Buisson, O.: Logo retrieval with a contrario visual query expansion. In: ACM International Conference on Multimedia, pp. 581–584 (2009)

    Google Scholar 

  10. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 506–513 (2004)

    Google Scholar 

  11. Lowe, D.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  12. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  13. Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: IEEE International Conference on Computer Vision, pp. 370–377 (2005)

    Google Scholar 

  14. Szeliski, R.: Computer Vision: Algorithms and Applications, 1st edn. Texts in Computer Science. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  15. Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: ACM International Conference on Multimedia Information Retrieval, pp. 427–434 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McGuinness, K., McCusker, K., O’Hare, N., O’Connor, N.E. (2012). Efficient Storage and Decoding of SURF Feature Points. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27355-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27354-4

  • Online ISBN: 978-3-642-27355-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics