Skip to main content

Efficient Confirmer Signatures from the “Signature of a Commitment” Paradigm

  • Conference paper
Provable Security (ProvSec 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6402))

Included in the following conference series:

Abstract

Generic constructions of designated confirmer signatures follow one of the following two strategies; either produce a digital signature on the message to be signed, then encrypt the resulting signature, or produce a commitment on the message, encrypt the string used to generate the commitment and finally sign the latter. We study the second strategy by determining the exact security property needed in the encryption to achieve secure constructions. This study infers the exclusion of a useful type of encryption from the design due to an intrinsic weakness in the paradigm. Next, we propose a simple method to remediate to this weakness and we get efficient constructions which can be used with any digital signature.

This is an extended abstract. The full version [19] is available at the Cryptology ePrint Archive, Report 2009/435.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures: How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Boyd, C., Foo, E.: Off-line Fair Payment Protocols using Convertible Signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 271–285. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptative Adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  10. Wikström, D.: Designated Confirmer Signatures Revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 342–361. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  14. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Gentry, C., Molnar, D., Ramzan, Z.: Efficient Designated Confirmer Signatures Without Random Oracles or General Zero-Knowledge Proofs. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Goldwasser, S., Waisbard, E.: Transformation of Digital Signature Schemes into Designated Confirmer Signature Schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 77–100. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Secure against Key Dependent Chosen Plaintext and Adaptive Chosen Ciphertext Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. El Aimani, L.: Efficient Confirmer Signatures from the Signature of a Commitment Paradigm, Cryptology ePrint Archive, Report 2009/435 (2009), http://eprint.iacr.org/

  20. El Aimani, L.: On Generic Constructions of Designated Confirmer Signatures (The “Encryption of a Signature” Paradigm Revisited), Cryptology ePrint Archive, Report 2009/403 (2009), http://eprint.iacr.org/

  21. Lim, C.H., Lee, P.J.: Modified Maurer-Yacobi‘s scheme and its applications. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 308–323. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  22. Michels, M., Stadler, M.: Generic Constructions for Secure and Efficient Confirmer Signature Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 406–421. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Wang, G., Baek, J., Wong, D.S., Bao, F.: On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 43–60. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Aimani, L. (2010). Efficient Confirmer Signatures from the “Signature of a Commitment” Paradigm. In: Heng, SH., Kurosawa, K. (eds) Provable Security. ProvSec 2010. Lecture Notes in Computer Science, vol 6402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16280-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16280-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16279-4

  • Online ISBN: 978-3-642-16280-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics