Skip to main content

Neural Network Repair with Reachability Analysis

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2022)

Abstract

Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control. This paper proposes a method to repair unsafe ReLU DNNs in safety-critical systems using reachability analysis. Our repair method uses reachability analysis to calculate the unsafe reachable domain of a DNN, and then uses a novel loss function to construct its distance to the safe domain during the retraining process. Since subtle changes of the DNN parameters can cause unexpected performance degradation, we also present a minimal repair approach where the DNN deviation is minimized. Furthermore, we explore applications of our method to repair DNN agents in deep reinforcement learning (DRL) with seamless integration with learning algorithms. Our method is evaluated on the ACAS Xu benchmark and a rocket lander system against the state-of-the-art method ART. Experimental results show that our repair approach can generate provably safe DNNs on multiple safety specifications with negligible performance degradation, even in the absence of training data (Code is available online at https://github.com/Shaddadi/veritex.git).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 44.99
Price excludes VAT (USA)
Softcover Book
USD 59.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/arex18/rocket-lander.

  2. 2.

    https://github.com/arex18/rocket-lander.git.

References

  1. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

  2. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural networks using verification. In: LPAR, vol. 2020, p. 23 (2020)

    Google Scholar 

  3. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  4. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

    Google Scholar 

  5. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) Reluplex: an efficient smt solver for verifying deep neural networks. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  6. Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  7. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  8. Lin, X., Zhu, H., Samanta, R., Jagannathan, S.: Art: Abstraction refinement-guided training for provably correct neural networks. In: FMCAD, pp. 148–157 (2020)

    Google Scholar 

  9. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

  10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  11. Majd, K., Zhou, S., Amor, H.B., Fainekos, G., Sankaranarayanan, S.: Local repair of neural networks using optimization. arXiv preprint arXiv:2109.14041 (2021)

  12. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for provably robust neural networks. In: International Conference on Machine Learning, pp. 3578–3586 (2018)

    Google Scholar 

  13. Sohn, J., Kang, S., Yoo, S.: Search based repair of deep neural networks. arXiv preprint arXiv:1912.12463 (2019)

  14. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_1

    Chapter  Google Scholar 

  15. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pasareanu, C.: NNrepair: constraint-based repair of neural network classifiers. arXiv preprint arXiv:2103.12535 (2021)

  16. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: 27th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2018), pp. 1599–1614 (2018)

    Google Scholar 

  17. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning, pp. 5286–5295. PMLR (2018)

    Google Scholar 

  18. Yang, X., Johnson, T.T., Tran, H.D., Yamaguchi, T., Hoxha, B., Prokhorov, D.: Reachability analysis of deep RELU neural networks using facet-vertex incidence. In: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. HSCC 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447928.3456650

  19. Yang, X., Yamaguchi, T., Tran, H.D., Hoxha, B., Johnson, T.T., Prokhorov, D.: Reachability analysis of convolutional neural networks. arXiv preprint arXiv:2106.12074 (2021)

Download references

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation (NSF) through grant numbers 1910017 and 2028001, the Defense Advanced Research Projects Agency (DARPA) under contract number FA8750-18-C-0089, and the Air Force Office of Scientific Research (AFOSR) under contract number FA9550-22-1-0019. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of AFOSR, DARPA, or NSF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Yang or Taylor T. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Yamaguchi, T., Tran, HD., Hoxha, B., Johnson, T.T., Prokhorov, D. (2022). Neural Network Repair with Reachability Analysis. In: Bogomolov, S., Parker, D. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2022. Lecture Notes in Computer Science, vol 13465. Springer, Cham. https://doi.org/10.1007/978-3-031-15839-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15839-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15838-4

  • Online ISBN: 978-3-031-15839-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics