Skip to main content

The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Abstract

The purpose of this manuscript is to provide an overview of the technical specifications and architecture of the Cancer imaging Phenomics Toolkit (CaPTk www.cbica.upenn.edu/captk), a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The primary aim of this platform is to enable swift and efficient translation of cutting-edge academic research into clinically useful tools relating to clinical quantification, analysis, predictive modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced computational functionality. This functionality describes specialized, as well as general-purpose, image analysis algorithms developed during active multi-disciplinary collaborative research studies to address real clinical requirements. The target audience of CaPTk consists of both computational scientists and clinical experts. For the former it provides i) an efficient image viewer offering the ability of integrating new algorithms, and ii) a library of readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly interface, eliminating the prerequisite of a substantial computational background. CaPTk’s long-term goal is to provide widely-used technology to make use of advanced quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of the biological mechanisms of cancer development.

S. Pati and A. Singh—Equally contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.cbica.upenn.edu/captk.

  2. 2.

    www.mevis.fraunhofer.de.

  3. 3.

    sites.google.com/view/greedyreg/about.

  4. 4.

    www.dcmtk.org.

  5. 5.

    gdcm.sourceforge.net.

  6. 6.

    www.qt.io.

  7. 7.

    www.itksnap.org.

  8. 8.

    cbica.github.io/CaPTk/tr_integration.html.

  9. 9.

    github.com/CBICA/CmdParser.

  10. 10.

    ipp.cbica.upenn.edu.

  11. 11.

    github.com/CBICA/CaPTk, github.com/CBICA/CaPTk/issues.

  12. 12.

    dev.azure.com/CBICA/CaPTk.

  13. 13.

    en.wikipedia.org/wiki/Code_review.

  14. 14.

    cbica.github.io/CaPTk/tr_FeatureExtraction.html.

  15. 15.

    docs.opencv.org/master/dd/ded/group__ml.html.

  16. 16.

    www.dcmtk.org.

  17. 17.

    gdcm.sourceforge.net.

  18. 18.

    en.wikipedia.org/wiki/Picture_archiving_and_communication_system.

  19. 19.

    news.developer.nvidia.com/nvidia-clara-train-annotation-will-be-integrated-into-mitk.

  20. 20.

    itcr.cancer.gov.

References

  1. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 277–289. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

    Chapter  Google Scholar 

  2. Wolf, I., et al.: The medical imaging interaction toolkit. Med. Image Anal. 9(6), 594–604 (2005)

    Article  Google Scholar 

  3. Link, F., Kuhagen, S., Boskamp, T., Rexilius, J., Dachwitz, S., Peitgen, H.: A flexible research and development platform for medical image processing and visualization. In: Proceeding Radiology Society of North America (RSNA), Chicago (2004)

    Google Scholar 

  4. Toussaint, N., Souplet, J.-C., Fillard, P.: MedINRIA: medical image navigation and research tool by INRIA (2007)

    Google Scholar 

  5. Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5(1), 011018 (2018)

    Article  Google Scholar 

  6. Rathore, S., et al.: Brain cancer imaging phenomics toolkit (brain-CaPTk): an interactive platform for quantitative analysis of glioblastoma. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 133–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_12

    Chapter  Google Scholar 

  7. Gooya, A., et al.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)

    Article  Google Scholar 

  8. Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_13

    Chapter  Google Scholar 

  9. Zeng, K., et al.: Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 184–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_18

    Chapter  Google Scholar 

  10. Marcus, D.S., Olsen, T.R., Ramaratnam, M., Buckner, R.L.: The extensible neuroimaging archive toolkit. Neuroinformatics 5(1), 11–33 (2007). https://doi.org/10.1385/NI:5:1:11

    Article  Google Scholar 

  11. McAuliffe, M.J., et al.: Medical image processing, analysis and visualization in clinical research. In: Proceedings 14th IEEE Symposium on Computer-Based Medical Systems, CBMS 2001, Bethesda, MD, USA, pp. 381–386 (2001). https://ieeexplore.ieee.org/document/941749

  12. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  13. Cox, R., et al.: A (sort of) new image data format standard: NIfTI-1: we 150. Neuroimage 22 (2004). https://www.scienceopen.com/document?vid=6873e18e-a308-4d49-b4aa-8b7f291c613c

  14. Yushkevich, P.A., Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 tesla and 7 tesla T2-weighted MRI. Alzheimer’s Dement. J. Alzheimer’s Assoc. 12(7), P126–P127 (2016)

    Article  Google Scholar 

  15. Smith, S.M., Brady, J.M.: Susanâ"a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  16. Shinohara, R.T., et al.: Statistical normalization techniques for magnetic resonance imaging. NeuroImage: Clin. 6, 9–19 (2014)

    Article  Google Scholar 

  17. Zwanenburg, A., Leger, S., Vallières, M., Löck, S.: Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003 (2016)

  18. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)

    Article  Google Scholar 

  19. Akbari, H., Bakas, S., Martinez-Lage, M., et al.: Quantitative radiomics and machine learning to distinguish true progression from pseudoprogression in patients with GBM. In: 56th Annual Meeting of the American Society for Neuroradiology, Vancouver, BC, Canada (2018)

    Google Scholar 

  20. Akbari, H., et al.: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4), 572–580 (2016)

    Article  Google Scholar 

  21. Macyszyn, L., et al.: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18(3), 417–425 (2015)

    Article  Google Scholar 

  22. Akbari, H., et al.: Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273(2), 502–510 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rathore, S., et al.: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J. Med. Imaging 5(2), 021219 (2018)

    Article  Google Scholar 

  24. Akbari, H., et al.: Survival prediction in glioblastoma patients using multi-parametric MRI biomarkers and machine learning methods. In: ASNR, Chicago, IL (2015)

    Google Scholar 

  25. Rathore, S., Bakas, S., Akbari, H., Shukla, G., Rozycki, M., Davatzikos, C.: Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 1057509. International Society for Optics and Photonics (2018)

    Google Scholar 

  26. Li, H., Galperin-Aizenberg, M., Pryma, D., Simone II, C.B., Fan, Y.: Unsupervised machine learning of radiomic features for predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. Radiother. Oncol. 129(2), 218–226 (2018)

    Article  Google Scholar 

  27. Bilello, M., et al.: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. NeuroImage: Clin. 12, 34–40 (2016)

    Article  Google Scholar 

  28. Tunç, B., et al.: Individualized map of white matter pathways: connectivity-based paradigm for neurosurgical planning. Neurosurgery 79(4), 568–577 (2015)

    Article  Google Scholar 

  29. Bakas, S., et al.: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the \(\varphi \)-index. Clin. Cancer Res. 23(16), 4724–4734 (2017)

    Article  Google Scholar 

  30. Akbari, H., et al.: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro-oncology 20(8), 1068–1079 (2018)

    Article  Google Scholar 

  31. Keller, B.M., et al.: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med. Phys. 39(8), 4903–4917 (2012)

    Article  Google Scholar 

  32. Keller, B.M., Kontos, D.: Preliminary evaluation of the publicly available laboratory for breast radiodensity assessment (LIBRA) software tool. Breast Cancer Res. 17, 117 (2015). https://doi.org/10.1186/s13058-015-0626-8

    Article  Google Scholar 

  33. Schweitzer, M., et al.: SCDT-37. Modulation of convection enhanced delivery (CED) distribution using focused ultrasound (FUS). Neuro-Oncology 19(Suppl 6), vi272 (2017)

    Google Scholar 

  34. Yoo, T.S., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK-the insight toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)

    Google Scholar 

  35. Schroeder, W.J., Lorensen, B., Martin, K.: The visualization toolkit: an object-oriented approach to 3D graphics. Kitware (2004)

    Google Scholar 

  36. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000). https://github.com/opencv/opencv/wiki/CiteOpenCV

  37. Herz, C., et al.: DCMQI: an open source library for standardized communication of quantitative image analysis results using DICOM. Cancer Res. 77(21), e87–e90 (2017)

    Article  Google Scholar 

  38. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  39. Amstutz, P., et al.: Common workflow language, v1.0 (2016)

    Google Scholar 

  40. Knuth, D.E.: Computer programming as an art. Commun. ACM 17(12), 667–673 (1974)

    Article  MATH  Google Scholar 

  41. Gastounioti, A., et al.: Breast parenchymal patterns in processed versus raw digital mammograms: a large population study toward assessing differences in quantitative measures across image representations. Med. Phys. 43(11), 5862–5877 (2016)

    Article  Google Scholar 

  42. Zheng, Y., et al.: Parenchymal texture analysis in digital mammography: a fully automated pipeline for breast cancer risk assessment. Med. Phys. 42(7), 4149–4160 (2015)

    Article  Google Scholar 

  43. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

CaPTk is primarily funded by the Informatics Technology for Cancer Research (ITCR)Footnote 20 program of the National Cancer Institute (NCI) of the NIH, under award number U24CA189523, as well as partly supported by the NIH under award numbers NINDS:R01NS042645, NCATS:UL1TR001878, and by the Institute for Translational Medicine and Therapeutics (ITMAT) of the University of Pennsylvania. The content of this publication is solely the responsibility of the authors and does not represent the official views of the NIH, or the ITMAT of the UPenn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Bakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pati, S. et al. (2020). The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics