Skip to main content

Living Nanomachines

  • Chapter
  • First Online:
Nanoscience

Abstract

The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

eferences

  1. Pawson, T., Nash, P.: Science 300, 445–452 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Feynman, R.P.: Annual Meeting of the American Physical Society (1959) www.zyvex.com/nanotech/feynman.html

  3. Lowe, C.R.: Curr. Opin. Struct. Biol. 10, 428–434 (2000)

    Article  CAS  MathSciNet  Google Scholar 

  4. Sablin, R.P., Dawson, J.F., Van Look, M.S., Spudich, J.A., Egelman, E.H., Fletterick, R.J.: How does ATP hydrolysis control actin’s association?, Proc. Natl. Acad. Sci. USA 99 (17), 10945–7 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Nogales, E.: A structural view of microtubule dynamics, Cell Mol. Life Sci. 56 (1��2), 133–42 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Bray, D.: Cell Movements, Garland (2000)

    Google Scholar 

  7. Lauffenburger, D.A., Horwitz, A.F.: Cell 84, 359–369 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Euteneuer, U., Schliwa, M.: Nature 310, 58–61 (1984)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Small, J.V., Herzog, M., Anderson, K.: J. Cell Biol. 129, 1275–1286 (1998)

    Article  Google Scholar 

  10. Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G.: Science 305, 1782–1786 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Holmes, K.C., Popp, D., Gebhard, W., Kabsch, W.: Nature 347, 44–49 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Pantaloni, D., Le Clainche, C., Carlier, M.-F.: Science 292, 1502–1506 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Loisel, T.P., Boujemaa, R., Pantaloni, D., Carlier, M.-F.: Nature 401, 613–616 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Romero, S., Le Clainche, C., Didry, D., Egile, C., Pantaloni, D., Carlier M.-F.: Cell 119, 419–429 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Gerbal, F., Laurent, V., Ott, A., Carlier, M.-F., Chaikin, P., Prost, J.: Eur. Biophys. J. 29, 134–140 (2000)

    CAS  Google Scholar 

  16. Wiesner, S., Helfer, E., Didry, D., Ducouret, G., Lafuma, F., Carlier, M.-F., Pantaloni, D.: J. Cell Biol. 160, 387–398 (2003)

    Article  CAS  Google Scholar 

  17. McGrath, J.L., Eundamrong, N.J., Fisher, C.I., Peng, F., Mahadevan, L., Mitchison, T.J., Kuo, S.C.: Curr. Biol. 13, 329–332 (2003)

    CAS  Google Scholar 

  18. Evans, E., Rawicz, W.: Phys. Rev. Lett. 64, 2094–2097 (1990)

    Article  CAS  ADS  Google Scholar 

  19. Upadhyaya, A., Chabot, J.R., Andreeva, A., Samadini, A., van Oudenaarden, A.: Proc. Natl. Acad. Sci. USA 100, 4521–4526 (2003)

    Article  CAS  ADS  Google Scholar 

  20. Giardini, P.A., Fletcher, D.A., Theriot, J.: Proc. Natl. Acad. Sci. USA 100, 6493–6498 (2003)

    Article  CAS  ADS  Google Scholar 

  21. Boukellal, H., Campas, O., Joanny, J.-F., Prost, J., Sykes, C.: Phys. Rev. E 69, 061906-1–061906-4 (2004)

    Google Scholar 

  22. Marcy, Y., Prost, J., Carlier, M.-F., Sykes, C.: Proc. Natl. Acad. Sci. USA 101, 5992–5997 (2004)

    Article  CAS  ADS  Google Scholar 

  23. Upadhyaya, A., van Oudenaarden, A.: Curr. Biol. 13, R734–R744 (2003)

    CAS  Google Scholar 

  24. Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, H., Spatz, J.P.: Chem. Phys. Chem. 5, 383–388 (2004)

    CAS  Google Scholar 

  25. Peskin, C.S., Odell, G.M., Oster, G.F.: Biophys. J. 65, 316–324 (1993)

    CAS  Google Scholar 

  26. Goldberg, M.B., Theriot, J.A.: Proc. Natl. Acad. Sci. USA 92, 6572–6576 (1995)

    Article  CAS  ADS  Google Scholar 

  27. Mogilner, A., Oster, G.: Biophys. J. 71, 3030–3045 (1996)

    CAS  Google Scholar 

  28. Mogilner, A., Oster, G.: Biophys. J. 84, 1591–1605 (2003)

    CAS  Google Scholar 

  29. Carlsson, A.E.: Biophys. J. 81, 1907–1923 (2001)

    CAS  Google Scholar 

  30. Carlsson, A.E.: Biophys. J. 84, 2907–2918 (2003)

    CAS  Google Scholar 

  31. Gerbal, F., Noireaux, V., Sykes, C., Jülicher, F., Chaikin, P., Ott, A., Prost, J., Golsteyn, R.M., Friederich, E., Louvard, D., Laurent, V., Carlier, M.-F.: PRAMANA-J. Phys. 53, 155–170 (1999)

    CAS  Google Scholar 

  32. Gerbal, F., Chaikin, P., Rabin, Y., Prost, J.: Biophys. J. 79, 2259–2275 (2000)

    CAS  Google Scholar 

  33. Lasa, I., Gouin, E., Goethals, M., Vancompernolle, K., David, V., Vandekerckhove, J., Cossart, P.: EMBO J. 16, 1531–1540 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Bernheim-Grosswasser, A., Wiesner, S., Golsteyn, R.M., Carlier, M.-F., Sykes, C.: Nature 417, 308–311 (2002)

    Article  ADS  CAS  Google Scholar 

  35. Limozin, L., Bärmann, M., Sackmann, E.: Eur. Phys. J. E 10, 319–330 (2003)

    CAS  Google Scholar 

  36. Miyata, H., Nishiyama, S., Akashi, K., Kinosita, K. Jr: Proc. Natl. Acad. Sci. USA 96, 2048–2053 (1999)

    Article  CAS  ADS  Google Scholar 

  37. Luduena, R.F.: Int. Rev. Cytol. 178, 207–275 (1998)

    Article  CAS  Google Scholar 

  38. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F.: Science 290, 972–977 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Myosin Homepage: www.mrc-lmb.cam.ac.uk/myosin/myosin.html

  40. Kinesin Homepage: www.proweb.org/kinesin/

  41. Howard, J.: Ann. Rev. Physiol. 58, 703–729 (1996)

    Article  CAS  Google Scholar 

  42. Svoboda, K., Block, S.M.: Cell 77, 773–784 (1994)

    Article  CAS  PubMed  Google Scholar 

  43. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T., Higuchi, H.: Nat. Cell Biol. 3, 425–428 (2001)

    CAS  Google Scholar 

  44. Funatsu, T., Harada, T., Tokunaga, M., Salto, K., Yanagida, T.: Nature 374, 555–559 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Science 303, 676–678 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  46. De la Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M., Sweeney, H.L.: Proc. Natl. Acad. Sci. USA. 96, 13726–13731 (1999)

    Article  ADS  Google Scholar 

  47. Mehta, A.D., Rief, M., Spudich, J.A., Smith, D.A., Simmons, R.M.: Science 283, 1689–1695 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Walker, M.L., Burgess, S.A., Sellers, J.R., Wang, F., Hammer, J.A., Trinick, J., Knight, P.J.: Nature 405, 804–807 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R.: Science 300, 2061–2065 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Churchman, L.S., Okten, Z., Rock, R.S., Dawson, J.F., Spudich, J.A.: Proc. Natl. Acad. Sci. USA 102, 1419–1423 (2005)

    Article  CAS  ADS  Google Scholar 

  51. Lister, I., Roberts, R., Schmidt, S., Walker, M., Trinick, J., Viegel, C., Buss, F., Kendrick-Jones, J.: Biochem. Soc. Trans. 32, 685–688 (2004)

    CAS  Google Scholar 

  52. Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L.-Q., Selvin, P.R., Sweeney, H.L.: J. Biol. Chem. 279, 37223–37226 (2004)

    Article  CAS  Google Scholar 

  53. Rock, R.S., Ramamurthy, B., Dunn, A.R., Beccafico, S., Rami, B.R., Morris, C., Spink, B.J., Franzini-Armstrong, C., Spudich, J.A., Sweeney, H.L.: Mol. Cell 17, 603–609 (2005)

    CAS  Google Scholar 

  54. Okten, Z., Churchman, L.S., Rock, R.S., Spudich, J.A.: Nat. Struct. Mol. Biol. 11, 884–887 (2004)

    Article  CAS  Google Scholar 

  55. Protein Data Base: www.rcsb.org/pdb

  56. Sablin, E.P., Kull, F.J., Cook, R., Vale, R.D., Fletterick, R.J.: Nature 380, 550–555 (1996)

    Article  PubMed  ADS  Google Scholar 

  57. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J., Vale, R.D.: Nature 380, 555–559 (1996)

    Article  PubMed  ADS  Google Scholar 

  58. Rayment, I., Rypniewski, W.R., Schmidt-Base, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G., Holden, H.M.: Science 261, 50–58 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Sablin, E.P., Fletterick, R.J.: Curr. Op. Struct. Biol. 11, 716–724 (2001)

    Article  CAS  Google Scholar 

  60. Houdusse, A., Szent-Györgyi, A.G., Cohen, C.: Proc. Natl. Acad. Sci. 97, 11238–11243 (2000)

    Article  CAS  ADS  Google Scholar 

  61. Menetrey, J., Bahloul, A., Wells, A.L., Yengo, C.M., Morris, C.A., Sweeney, H.L., Houdusse, A.: Nature 435, 779–785 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Arnal, I., Metoz, F., Debonis, S., Wade, R.H.: Curr. Biol. 6, 1265–1270 (1996)

    CAS  Google Scholar 

  63. Henningsen, U., Schliwa, M.: Nature 389, 93–95 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Endow, S.A., Waligora, K.W.: Science 281, 1200–1202 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Wade, R.H., Kozielski, F.: Nat. Struct. Biol. 7, 456–460 (2000)

    Article  CAS  Google Scholar 

  66. Abrahams, J.P., Leslie, A.G., Lutter, R., Walker, J.E.: Nature 370, 621–628 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Boyer, P.D.: Biochim. Biophys. Acta. 1140, 215–250 (1993)

    Article  CAS  ADS  Google Scholar 

  68. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K., Jr: Nature 386, 299–302 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Adachi, K., Yasuda, R., Noji, H., Itoh, H., Harada, Y., Yoshida, M., Kinosita, K., Jr: Proc. Natl. Acad. Sci. USA 97, 7243–7247 (2000)

    Article  CAS  ADS  Google Scholar 

  70. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr, Itoh, H.: Nature 410, 898–904 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Nishizaka, T., Oiwa, K., Noji, H., Kimura, S., Muneyuki, E., Yoshida, M., Kinosita, K., Jr: Nat. Struct. Mol. Biol. 11, 142–148 (2004)

    Article  CAS  Google Scholar 

  72. Steigmiller, S., Zimmermann, B., Diez, M., Börsch, M., Gräber, P.: Bioelectrochemistry 63, 79–85 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y., Wang, J., Cui, Y., Yue, J., Fang, X.: Biochem. Biophys. Res. Commun. 331, 370–374 (2005)

    Article  CAS  Google Scholar 

  74. Itoh, H., Takahashi, A., Adachi, K., Noji, H., Yasuda, R., Yoshida, M., Kinosita, K. Jr: Nature 427, 465–468 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Junge, W., Lill, H., Engelbrecht, S.: Trends Biochem. Sci. 22, 420–423 (1997)

    CAS  Google Scholar 

  76. Stock, D., Leslie, A.G., Walker, J.E.: Science 286, 1700–1705 (1999)

    Article  CAS  PubMed  Google Scholar 

  77. Seelert, H., Poetsch, A., Dencher, N.A., Engel, A., Stahlberg, H., Müller, D.J.: Nature 405, 418–429 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Jiang, W., Hermolin, J., Fillingame, R.H.: Proc. Natl Acad. Sci. USA 98, 4966–4971 (2001)

    Article  CAS  ADS  Google Scholar 

  79. Stahlberg, H., Müller, D.J., Suda, K., Fotiadis, D., Engel, A., Meier, T., Matthey, U., Dimroth, P.: EMBO Rep. 2, 229–233 (2001)

    Article  CAS  PubMed  Google Scholar 

  80. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A.G., Walker, J.E.: Science 308, 654–659 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Feniouk, B., Junge, W.: FEBS Lett. 579, 5114–5118 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. Corvest, V., Sigalat, C., Venard, R., Falson, P., Mueller, D.M., Haraux, F.: J. Biol. Chem. 280, 9927–9936 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-F. Carlier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlier, MF., Helfer, E., Wade, R., Haraux, F. (2009). Living Nanomachines. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_5

Download citation

Publish with us

Policies and ethics