Skip to main content

An Intelligent Dynamic Selection System Based on Nearest Temporal Windows for Time Series Forecasting

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Real-world time series present patterns that change over time, making them difficult to forecast using only one forecasting model. Dynamic selection approaches have been highlighted in literature due to their accuracy and ability to model different local patterns. These approaches select one or more models from a pool (or ensemble) to forecast each test pattern. This selection is performed based on the pool’s performance in a Region of Competence (RoC), a set of samples most similar to a test pattern. The RoC definition, the pool creation, the number of selected models, and the function for combining the forecasts are critical issues for the dynamic selection approaches once their accuracy is closely related to them. This paper proposes a dynamic selection system based on a heterogeneous pool that performs a data-driven choice to determine: (i) the best RoC size, (ii) the set of the most competent forecasting models, and (iii) the most suitable combination function. The selection uses an RoC composed of the nearest antecedent windows to a test pattern. The proposal employs a heterogeneous pool comprising six forecasting models: Autoregressive Integrated Moving Average (ARIMA), Theta model, Support Vector Regression (SVR), Multilayer Perceptron (MLP), Extreme Learning Machine (ELM), and Long Short-Term Memory (LSTM). An experimental analysis performed using seven well-known data sets showed that the proposal overcame literature single and ensemble approaches, indicating that it is able to perform a better dynamic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 69.99
Price excludes VAT (USA)
Softcover Book
USD 89.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/EraylsonGaldino/dataset_time_series.

References

  1. Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M.: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl. Soft Comput. 90, 106181 (2020)

    Article  Google Scholar 

  2. Kaushik, S., et al.: AI in healthcare: time-series forecasting using statistical, neural, and ensemble architectures. Front. Big Data 3, 4 (2020)

    Article  Google Scholar 

  3. Karevan, Z., Suykens, J.A.: Transductive LSTM for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020)

    Article  Google Scholar 

  4. Pierros, I., Vlahavas, I.: Architecture-agnostic time-step boosting: a case study in short-term load forecasting. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) Artificial Neural Networks and Machine Learning. ICANN 2022. LNCS, vol. 13531, pp. 556–568. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15934-3_46

  5. Elorrieta, F., Eyheramendy, S., Palma, W.: Discrete-time autoregressive model for unequally spaced time-series observations. Astron. Astrophys. 627, A120 (2019)

    Article  Google Scholar 

  6. Hajirahimi, Z., Khashei, M.: Hybrid structures in time series modeling and forecasting: a review. Eng. Appl. Artif. Intell. 86, 83–106 (2019)

    Article  MATH  Google Scholar 

  7. Tealab, A.: Time series forecasting using artificial neural networks methodologies: a systematic review. Future Comput. Inform. J. 3(2), 334–340 (2018)

    Article  Google Scholar 

  8. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 379(2194), 20200209 (2021)

    Article  MathSciNet  Google Scholar 

  9. Cheng, C., et al.: Time series forecasting for nonlinear and nonstationary processes: a review and comparative study. IIE Trans. 47, 1053–1071 (2015)

    Article  Google Scholar 

  10. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36, 54–74 (2019)

    Article  Google Scholar 

  11. Silva, E.G., De Mattos Neto, P.S.G., Cavalcanti, G.D.C.: A dynamic predictor selection method based on recent temporal windows for time series forecasting. IEEE Access. 9, 108466–108479 (2021)

    Google Scholar 

  12. Neto, P.S.D.M., Firmino, P.R.A., Siqueira, H., Tadano, Y.D.S., Alves, T.A., De Oliveira, J.F.L., Marinho, M.H.D.N., Madeiro, F.: Neural-based ensembles for particulate matter forecasting. IEEE Access 9, 14470–14490 (2021)

    Article  Google Scholar 

  13. Qi, M., Zhang, G.P.: An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 132(3), 666–680 (2001)

    Article  MATH  Google Scholar 

  14. Oliveira, M., Torgo, L.: Ensembles for time series forecasting. In: Asian Conference on Machine Learning, pp. 360–370. PMLR (2015)

    Google Scholar 

  15. Santos, D., et al.: Solar irradiance forecasting using dynamic ensemble selection. Appl. Sci. 12, 3510 (2022)

    Article  Google Scholar 

  16. Saadallah, A., Priebe, F., Morik, K.: A drift-based dynamic ensemble members selection using clustering for time series forecasting. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 678–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_40

    Chapter  Google Scholar 

  17. Cerqueira, V., Torgo, L., Oliveira, M., Pfahringer, B.: Dynamic and heterogeneous ensembles for time series forecasting. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 242–251 (2017)

    Google Scholar 

  18. Du, L., Gao, R., Suganthan, P., Wang, D.: Bayesian optimization based dynamic ensemble for time series forecasting. Inf. Sci. 591, 155–175 (2022)

    Article  Google Scholar 

  19. Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: FFORMA: feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92 (2020)

    Article  Google Scholar 

  20. Fu, Y., Wu, D., Boulet, B.: Reinforcement learning based dynamic model combination for time series forecasting. Proc. AAAI Conf. Artif. Intell. 36(6), 6639–6647 (2022)

    Google Scholar 

  21. Siami-Namini, S., Tavakoli, N., Siami Namin, A.: A comparison of ARIMA and LSTM in forecasting time series. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1394–1401 (2018)

    Google Scholar 

  22. de O. Santos Jùnior, D.S., de Oliveira, J.F., de Mattos Neto, P.S.: An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl. Based Syst. 175, 72–86 (2019)

    Google Scholar 

  23. Chen, J.L., Li, G.S.: Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theoret. Appl. Climatol. 115, 627–638 (2013)

    Article  Google Scholar 

  24. Valente, J.M., Maldonado, S.: SVR-FFS: a novel forward feature selection approach for high-frequency time series forecasting using support vector regression. Expert Syst. Appl. 160, 113729 (2020)

    Article  Google Scholar 

  25. Borghi, P.H., Zakordonets, O., Teixeira, J.P.: A COVID-19 time series forecasting model based on MLP ANN. Proc. Comput. Sci, 181, 940–947 (2021)

    Article  Google Scholar 

  26. Song, G., Dai, Q.: A novel double deep ELMs ensemble system for time series forecasting. Knowl. Based Syst. 134, 31–49 (2017)

    Article  Google Scholar 

  27. Thomakos, D.D., Nikolopoulos, K.: Forecasting multivariate time series with the theta method. J. Forecast. 34(3), 220–229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Elsworth, S., Güttel, S.: Time Series Forecasting Using LSTM Networks: A Symbolic Approach (2020)

    Google Scholar 

  29. Hyndman, R., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Statist. Softw. 26, 1–22 (2008)

    Google Scholar 

  30. Assimakopoulos, V., Nikolopoulos, K.: The theta model: a decomposition approach to forecasting. Int. J. Forecast. 16, 521–530 (2000)

    Article  Google Scholar 

  31. Fiorucci, J., Pellegrini, T., Louzada, F., Petropoulos, F.: The Optimised Theta Method (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. G. de Mattos Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matos, G.M., de Mattos Neto, P.S.G. (2023). An Intelligent Dynamic Selection System Based on Nearest Temporal Windows for Time Series Forecasting. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44223-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44222-3

  • Online ISBN: 978-3-031-44223-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics