Skip to main content

Multi-modal Genotype and Phenotype Mutual Learning to Enhance Single-Modal Input Based Longitudinal Outcome Prediction

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13278))

  • 2201 Accesses

Abstract

In recent years, due to the advance of modern sensory devices, the collection of multiple biomedical data modalities such as imaging genetics has gotten feasible, and multimodal data analysis has attracted significant attention in bioinformatics. Although existing multimodal learning methods have shown superior ability in combining data from multiple sources, they are not directly applicable for many real-world biological and biomedical studies that suffer from missing data modalities due to the high expenses of collecting all modalities. Thus, in practice, usually, only a main modality containing a major ‘diagnostic signal’ is used for decision making as auxiliary modalities are not available. In addition, during the examination of a subject regarding a chronic disease (with longitudinal progression) in a visit, typically, two diagnosis-related questions are of main interest that are what their status currently is (diagnosis) and how it will change before their next visit (longitudinal outcome) if they maintain their disease trajectory and lifestyle. Accurate answers to these questions can distinguish vulnerable subjects and enable clinicians to start early treatments for them. In this paper, we propose a new adversarial mutual learning framework for longitudinal prediction of disease progression such that we properly leverage several modalities of data available in training set to develop a more accurate model using single-modal for prediction. Specifically, in our framework, a single-modal model (that utilizes the main modality) learns from a pretrained multimodal model (which takes both main and auxiliary modalities as input) in a mutual learning manner to 1) infer outcome-related representations of the auxiliary modalities based on its own representations for the main modality during adversarial training and 2) effectively combine them to predict the longitudinal outcome. We apply our new method to analyze the retinal imaging genetics for the early diagnosis of Age-related Macular Degeneration (AMD) disease in which we formulate prediction of longitudinal AMD progression outcome of subjects as a classification problem of simultaneously grading their current AMD severity as well as predicting their condition in their next visit with a preselected time duration between visits. Our experiments on the Age-Related Eye Disease Study (AREDS) dataset demonstrate the superiority of our model compared to baselines for simultaneously grading and predicting future AMD severity of subjects.

This work was partially supported by NSF IIS 1845666, 1852606, 1838627, 1837956, 1956002, IIA 2040588.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 64.99
Price excludes VAT (USA)
Softcover Book
USD 84.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1.

References

  1. Aakur, S.N., Narayanan, S., Indla, V., Bagavathi, A., Laguduva Ramnath, V., Ramachandran, A.: MG-NET: leveraging pseudo-imaging for multi-modal metagenome analysis. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 592–602. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_57

    Chapter  Google Scholar 

  2. Agrawal, A., Batra, D., Parikh, D., Kembhavi, A.: Don’t just assume; look and answer: Overcoming priors for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4971–4980 (2018)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  4. Arvanitidis, G., Hauberg, S., Schölkopf, B.: Geometrically enriched latent spaces. In: Banerjee, A., Fukumizu, K. (eds.) The 24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021, 13–15 April 2021, Virtual Event. Proceedings of Machine Learning Research, vol. 130, pp. 631–639. PMLR (2021). http://proceedings.mlr.press/v130/arvanitidis21a.html

  5. Ayoub, T., Patel, N.: Age-related macular degeneration. J. R. Soc. Med. 102(2), 56–61 (2009)

    Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M., et al.: Analysis and Geometry of Markov Diffusion Operators, vol. 103. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00227-9

  7. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  8. Bhat, P., Arani, E., Zonooz, B.: Distill on the go: online knowledge distillation in self-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2021, virtual, June 19–25, 2021. pp. 2678–2687. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPRW53098.2021.00301

  9. Bird, A.C., et al.: An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol. 39(5), 367–374 (1995)

    Article  Google Scholar 

  10. Bridge, J., Harding, S., Zheng, Y.: Development and validation of a novel prognostic model for predicting AMD progression using longitudinal fundus images. BMJ Open Ophthal. 5(1), e000569 (2020)

    Google Scholar 

  11. Burlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M.: Detection of age-related macular degeneration via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 184–188. IEEE (2016)

    Google Scholar 

  12. Burlina, P.M., Joshi, N., Pacheco, K.D., Freund, D.E., Kong, J., Bressler, N.M.: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA Ophthalmol. 136(12), 1359–1366 (2018)

    Google Scholar 

  13. Burlina, P.M., Joshi, N., Pekala, M., Pacheco, K.D., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135(11), 1170–1176 (2017)

    Google Scholar 

  14. Cai, L., Wang, Z., Gao, H., Shen, D., Ji, S.: Deep adversarial learning for multi-modality missing data completion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1158–1166 (2018)

    Google Scholar 

  15. Chavdarova, T., Fleuret, F.: SGAN: an alternative training of generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9407–9415 (2018)

    Google Scholar 

  16. Congdon, N., et al.: Causes and prevalence of visual impairment among adults in the united states. Arch. Ophthalmol. (Chicago, Ill.: 1960) 122(4), 477–485 (2004)

    Google Scholar 

  17. Dancette, C., Cadene, R., Teney, D., Cord, M.: Beyond question-based biases: assessing multimodal shortcut learning in visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1574–1583, October 2021

    Google Scholar 

  18. Edraki, M., Qi, G.J.: Generalized loss-sensitive adversarial learning with manifold margins. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)

    Google Scholar 

  19. Ferris III, F.L., et al.: Clinical classification of age-related macular degeneration. Ophthalmology 120(4), 844–851 (2013)

    Google Scholar 

  20. Fritsche, L.G., et al.: Seven new loci associated with age-related macular degeneration. Nat. Geneti. 45(4), 433–439 (2013)

    Google Scholar 

  21. Fritsche, L.G., et al.: A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48(2), 134–143 (2016)

    Google Scholar 

  22. Gao, R., Oh, T.H., Grauman, K., Torresani, L.: Listen to look: action recognition by previewing audio. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10457–10467 (2020)

    Google Scholar 

  23. Garcia, N., Nakashima, Y.: Knowledge-based video question answering with unsupervised scene descriptions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 581–598. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_34

  24. Gat, I., Schwartz, I., Schwing, A.G., Hazan, T.: Removing bias in multi-modal classifiers: regularization by maximizing functional entropies. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/20d749bc05f47d2bd3026ce457dcfd8e-Abstract.html

  25. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)

  26. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  27. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vis. 129(6), 1789–1819 (2021)

    Google Scholar 

  28. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)

    Google Scholar 

  29. Grassmann, F., et al.: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9), 1410–1420 (2018)

    Google Scholar 

  30. bibitemch13DBLP:confspsnipsspsGulrajaniAADC17 Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Guyon, I., et al. (eds.) Annual Conference on Neural Information Processing Systems 2017, vol. 30, 4–9 December 2017, Long Beach, CA, USA. pp. 5767–5777 (2017). https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html

  31. Guo, Q., et al.: Online knowledge distillation via collaborative learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11020–11029 (2020)

    Google Scholar 

  32. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  34. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  35. Hou, J.C., Wang, S.S., Lai, Y.H., Tsao, Y., Chang, H.W., Wang, H.M.: Audio-visual speech enhancement using multimodal deep convolutional neural networks. IEEE Trans. Emerg. Topics Comput. Intell. 2(2), 117–128 (2018)

    Google Scholar 

  36. Huber, P.J.: Robust estimation of a location parameter. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics, pp. 492–518. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_35

  37. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=S1erHoR5t7

  38. Keenan, T.D., et al.: A deep learning approach for automated detection of geographic atrophy from color fundus photographs. Ophthalmology 126(11), 1533–1540 (2019)

    Google Scholar 

  39. Kim, J., Jun, J., Zhang, B.: Bilinear attention networks. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, vol. 31, 3–8 December 2018, Montréal, Canada, pp. 1571–1581 (2018), https://proceedings.neurips.cc/paper/2018/hash/96ea64f3a1aa2fd00c72faacf0cb8ac9-Abstract.html

  40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015). http://arxiv.org/abs/1412.6980

  41. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Annual Conference on Neural Information Processing Systems, 2018, vol. 31 NeurIPS 2018, 3–8 December 2018, Montréal, Canada. pp. 7528–7538 (2018). https://proceedings.neurips.cc/paper/2018/hash/94ef7214c4a90790186e255304f8fd1f-Abstract.html

  42. Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521. PMLR (2021)

    Google Scholar 

  43. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  44. Lin, X., Bertasius, G., Wang, J., Chang, S.F., Parikh, D., Torresani, L.: Vx2text: end-to-end learning of video-based text generation from multimodal inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7005–7015, June 2021

    Google Scholar 

  45. Liu, Y., et al.: Unbiased teacher for semi-supervised object detection. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=MJIve1zgR_

  46. Luu, J., Palczewski, K.: Human aging and disease: lessons from age-related macular degeneration. Proc. Natil. Acad. Sci. 115(12), 2866–2872 (2018)

    Google Scholar 

  47. Ma, M., Ren, J., Zhao, L., Tulyakov, S., Wu, C., Peng, X.: SMIL: multimodal learning with severely missing modality. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2302–2310 (2021)

    Google Scholar 

  48. Metzker, M.L.: Sequencing technologies-the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010)

    Google Scholar 

  49. Mikheyev, A.S., Tin, M.M.: A first look at the oxford nanopore minion sequencer. Mol. Ecol. Resour. 14(6), 1097–1102 (2014)

    Google Scholar 

  50. Panda, R., et al.: AdaMML adaptive multi-modal learning for efficient video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7576–7585, October 2021

    Google Scholar 

  51. Park, S.W., Kwon, J.: Sphere generative adversarial network based on geometric moment matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4292–4301 (2019)

    Google Scholar 

  52. Peng, Y., et al.: DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 126(4), 565–575 (2019)

    Google Scholar 

  53. Peng, Y., et al.: Predicting risk of late age-related macular degeneration using deep learning. NPJ Digit. Med. 3(1), 1–10 (2020)

    Google Scholar 

  54. Qi, L., et al,: Multi-scale aligned distillation for low-resolution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14443–14453 (2021)

    Google Scholar 

  55. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  56. Seo, A., Kang, G., Park, J., Zhang, B.: Attend what you need: motion-appearance synergistic networks for video question answering. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6 August 2021. pp. 6167–6177. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.481

  57. Shi, Y., Narayanaswamy, S., Paige, B., Torr, P.H.S.: Variational mixture-of-experts autoencoders for multi-modal deep generative models. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, vol. 32, 8–14 December 2019, Vancouver, BC, Canada. pp. 15692–15703 (2019). https://proceedings.neurips.cc/paper/2019/hash/0ae775a8cb3b499ad1fca944e6f5c836-Abstract.html

  58. Shim, W., Cho, M.: CircleGAN: generative adversarial learning across spherical circles. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 21081–21091. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/f14bc21be7eaeed046fed206a492e652-Paper.pdf

  59. Son, W., Na, J., Choi, J., Hwang, W.: Densely guided knowledge distillation using multiple teacher assistants. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9395–9404 (2021)

    Google Scholar 

  60. Study, T.A.R.E.D., et al.: The age-related eye disease study (AREDS): design implications AREDS report no. 1. Control. Clin. Trials 20(6), 573–600 (1999)

    Google Scholar 

  61. Suo, Q., Zhong, W., Ma, F., Yuan, Y., Gao, J., Zhang, A.: Metric learning on healthcare data with incomplete modalities. In: IJCAI, pp. 3534–3540 (2019)

    Google Scholar 

  62. Tao, S., Wang, J.: Alleviation of gradient exploding in GANs: fake can be real. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1191–1200 (2020)

    Google Scholar 

  63. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  64. Tran, L., Liu, X., Zhou, J., Jin, R.: Missing modalities imputation via cascaded residual autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1405–1414 (2017)

    Google Scholar 

  65. Trucco, E., MacGillivray, T., Xu, Y.: Computational retinal image analysis: tools. In: Trucco, E., MacGillivray, T., Xu, Y. (eds.) Applications and Perspectives, Academic Press, New York (2019)

    Google Scholar 

  66. Tsai, Y.H., Liang, P.P., Zadeh, A., Morency, L., Salakhutdinov, R.: Learning factorized multimodal representations. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=rygqqsA9KX

  67. Uppal, S., Bhagat, S., Hazarika, D., Majumder, N., Poria, S., Zimmermann, R., Zadeh, A.: Multimodal research in vision and language: a review of current and emerging trends. Inf. Fusion 77, 149–171 (2021)

    Google Scholar 

  68. Wang, J., Li, Y., Hu, J., Yang, X., Ding, Y.: Self-supervised mutual learning for video representation learning. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  69. Wang, Q., Zhan, L., Thompson, P., Zhou, J.: Multimodal learning with incomplete modalities by knowledge distillation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1828–1838 (2020)

    Google Scholar 

  70. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12695–12705 (2020)

    Google Scholar 

  71. Wei, Y., Liu, Y., Sun, T., Chen, W., Ding, Y.: Gene-based association analysis for bivariate time-to-event data through functional regression with copula models. Biometrics 76(2), 619–629 (2020)

    Google Scholar 

  72. Wen, Y., Chen, L., Qiao, L., Deng, Y., Zhou, C.: On the deep learning-based age prediction of color fundus images and correlation with ophthalmic diseases. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1171–1175. IEEE (2020)

    Google Scholar 

  73. Wu, G., Gong, S.: Peer collaborative learning for online knowledge distillation. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021, pp. 10302–10310. AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/article/view/17234

  74. Wu, M., Goodman, N.D.: Multimodal generative models for scalable weakly-supervised learning. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada. pp. 5580–5590 (2018). https://proceedings.neurips.cc/paper/2018/hash/1102a326d5f7c9e04fc3c89d0ede88c9-Abstract.html

  75. Wu, S., Li, J., Liu, C., Yu, Z., Wong, H.S.: Mutual learning of complementary networks via residual correction for improving semi-supervised classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6500–6509 (2019)

    Google Scholar 

  76. Xu, D., Ouyang, W., Ricci, E., Wang, X., Sebe, N.: Learning cross-modal deep representations for robust pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5363–5371 (2017)

    Google Scholar 

  77. Yan, Q., et al.: Genome-wide analysis of disease progression in age-related macular degeneration. Hum. Mol. Genet. 27(5), 929–940 (2018)

    Google Scholar 

  78. Yan, Q., et al.: Deep-learning-based prediction of late age-related macular degeneration progression. Nat. Mach. Intell. 2(2), 141–150 (2020)

    Google Scholar 

  79. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: Visual commonsense reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6720–6731 (2019)

    Google Scholar 

  80. Zhang, Y., et al.: Modality-aware mutual learning for multi-modal medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 589–599. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_56

  81. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  82. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Heng Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 331 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganjdanesh, A., Zhang, J., Chen, W., Huang, H. (2022). Multi-modal Genotype and Phenotype Mutual Learning to Enhance Single-Modal Input Based Longitudinal Outcome Prediction. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. https://doi.org/10.1007/978-3-031-04749-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04749-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04748-0

  • Online ISBN: 978-3-031-04749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics