Skip to main content

EuWireless RAN Architecture and Slicing Framework for Virtual Testbeds

  • Conference paper
  • First Online:
Testbeds and Research Infrastructures for the Development of Networks and Communications (TridentCom 2019)

Abstract

The most recent evolutionary steps in the development of mobile communication network architectures have introduced the concepts of virtualisation and slicing also into the Radio Access Network (RAN) part of the overall infrastructure. This trend has made RANs more flexible than ever before, facilitating resource sharing concepts which go far beyond the traditional infrastructure and RAN sharing schemes between commercial Mobile Network Operators (MNO). This paper introduces the EuWireless concept for a pan-European mobile network operator for research and presents its vision for RAN slicing and network resource sharing between the infrastructures of the EuWireless operator, commercial MNOs and research organisations around Europe. The EuWireless approach is to offer virtual large-scale testbeds, i.e., EuWireless experimentation slices, to European mobile network researchers by combining the experimental technologies from the local small-scale research testbeds with the commercial MNO resources such as licensed spectrum. The combined resources are configured and managed through the distributed EuWireless architecture based on inter-connected local installations, so-called Points of Presences (PoP).

This work is funded by the European Union’s Horizon 2020 research and innovation programme, grant agreement No. 777517 (EuWireless project).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 3rd Generation Partnership Project: Study on new radio access technology: radio access architecture and interfaces. 3GPP TR 38.801 V14.0.0 (2017)

    Google Scholar 

  2. 3rd Generation Partnership Project: NG-RAN; Architecture description. 3GPP TS 38.401 V15.1.0 (2018)

    Google Scholar 

  3. 3rd Generation Partnership Project: NR; NR and NG-RAN Overall Description; Stage 2. 3GPP TS 38.300 V15.1.0 (2018)

    Google Scholar 

  4. 3rd Generation Partnership Project: System Architecture for the 5G System; Stage 2. 3GPP TS 23.501 V15.1.0 (2018)

    Google Scholar 

  5. 5G-PPP Architecture Working Group: View on 5G architecture. Version 3.0 (2019)

    Google Scholar 

  6. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018). https://doi.org/10.1109/COMST.2018.2815638

    Article  Google Scholar 

  7. Berman, M., et al.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61(2014), 5–23 (2014). https://doi.org/10.1016/j.bjp.2013.12.037

    Article  Google Scholar 

  8. Bertenyi, B., Burbidge, R., Masini, G., Sirotkin, S., Gao, Y.: NG Radio Access Network (NG-RAN). J. ICT Stand. 6(1), 59–76 (2018). https://doi.org/10.13052/jicts2245-800x.614

    Article  Google Scholar 

  9. Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015). https://doi.org/10.1109/COMST.2014.2355255

    Article  Google Scholar 

  10. China Mobile Research Institute: C-RAN: The Road Towards Green RAN (2011)

    Google Scholar 

  11. Da Silva, I., et al.: Impact of network slicing on 5G Radio Access Networks. In: European Conference on Networks and Communications, EUCNC 2016, pp. 153–157 (2016). https://doi.org/10.1109/EuCNC.2016.7561023

  12. European Telecommunications Standards Institute: Network Functions Virtualisation (NFV); Architectural Framework. ETSI GS NFV 002 - V1.2.1 (2014)

    Google Scholar 

  13. European Telecommunications Standards Institute: Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework. ETSI GS NFV-EVE 005 V1.1.1 (2015)

    Google Scholar 

  14. Farina, F., Szegedi, P., Sobieski, J.: GÉANT world testbed facility: federated and distributed testbeds as a service facility of GÉANT. In: 2014 26th International Teletraffic Congress, ITC 2014, Karlskrona, pp. 1–6. IEEE (2014). https://doi.org/10.1109/ITC.2014.6932972

  15. Ferrús, R., Sallent, O., Pérez-Romero, J., Agustí, R.: On 5G radio access network slicing: radio interface protocol features and configuration. IEEE Commun. Mag. 56(5), 184–192 (2018). https://doi.org/10.1109/MCOM.2017.1700268

    Article  Google Scholar 

  16. Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5G: survey and challenges. IEEE Commun. Mag. 55(5), 94–100 (2017). https://doi.org/10.1109/MCOM.2017.1600951

    Article  Google Scholar 

  17. Guttman, E., Ali, I.: Path to 5G: a control plane perspective. J. ICT Stand. 6(1), 87–100 (2018). https://doi.org/10.13052/jicts2245-800x.616

    Article  Google Scholar 

  18. Haque, I.T., Abu-Ghazaleh, N.: Wireless software defined networking: a survey and taxonomy. IEEE Commun. Surv. Tutor. 18(4), 2713–2737 (2016). https://doi.org/10.1109/COMST.2016.2571118

    Article  Google Scholar 

  19. He, K., et al.: Measuring control plane latency in SDN-enabled switches. In: 1st ACM SIGCOMM Symposium on Software Defined Networking Research, Santa Clara, pp. 25:1–25:6. ACM Press (2015). https://doi.org/10.1145/2774993.2775069

  20. Koumaras, H., et al.: 5GENESIS: the genesis of a flexible 5G facility. In: IEEE International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks, Barcelona, p. 6. IEEE (2018). https://doi.org/10.1109/CAMAD.2018.8514956

  21. Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999. http://ieeexplore.ieee.org/document/6994333/

    Article  Google Scholar 

  22. Mademann, F.: The 5G system architecture. J. ICT Stand. 6(1), 77–86 (2018). https://doi.org/10.13052/jicts2245-800x.615

    Article  Google Scholar 

  23. Mayer, G.: RESTful APIs for the 5G service based architecture. J. ICT Stand. 6(1), 101–116 (2018). https://doi.org/10.13052/jicts2245-800x.617

    Article  Google Scholar 

  24. Medhat, A.M., Taleb, T., Elmangoush, A., Carella, G.A., Covaci, S., Magedanz, T.: Service function chaining in next generation networks: state of the art and research challenges. IEEE Commun. Mag. 55(2), 216–223 (2017). https://doi.org/10.1109/MCOM.2016.1600219RP

    Article  Google Scholar 

  25. Merino, P., et al.: EuWireless: design of a pan-European mobile network operator for research. In: European Conference on Networks and Communications, EuCNC 2018, Ljubljana, p. 2. IEEE (2018)

    Google Scholar 

  26. Mueck, M.D., Srikanteswara, S., Badic, B.: Spectrum Sharing: Licensed Shared Access (LSA) and Spectrum Access System (SAS) (2015)

    Google Scholar 

  27. Next Generation Mobile Networks Alliance: 5G White Paper (2015)

    Google Scholar 

  28. Next Generation Mobile Networks Alliance: NGMN Overview on 5G RAN Functional Decomposition (2018)

    Google Scholar 

  29. O-RAN Alliance: O-RAN: Towards an Open and Smart RAN (2018)

    Google Scholar 

  30. Open Networking Foundation: Applying SDN Architecture to 5G Slicing (2016)

    Google Scholar 

  31. Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J.J., Lorca, J., Folgueira, J.: Network slicing for 5G with SDN/NFV: concepts, architectures, and challenges. IEEE Commun. Mag. 55(5), 80–87 (2017). https://doi.org/10.1109/MCOM.2017.1600935

    Article  Google Scholar 

  32. Rios, Á., Valera-Muros, B., Merino-Gomez, P., Sobieski, J.: Expanding GÉANT testbeds service to support pan-European 5G network slices for research in the EuWireless project. Mob. Inf. Syst. 2019, 1–13 (2019). https://doi.org/10.1155/2019/6249247

    Article  Google Scholar 

  33. Robitza, W., et al.: Challenges of future multimedia QoE monitoring for internet service providers. Multimed. Tools Appl. 76(21), 22243–22266 (2017). https://doi.org/10.1007/s11042-017-4870-z

    Article  Google Scholar 

  34. Safianowska, M.B., et al.: Current experiences and lessons learned towards defining pan-European mobile network operator for research - based on EU project EuWireless. Przegla̧d Telekomun. I Wiadomości Telekomun. 2019(6) (2019). https://doi.org/10.15199/59.2019.6.5

  35. Sallent, O., Pérez-Romero, J., Ferrús, R., Agustí, R.: On radio access network slicing from a radio resource management perspective. IEEE Wirel. Commun. Netw. Conf. WCNC 24(5), 166–174 (2017). https://doi.org/10.1109/MWC.2017.1600220WC

    Article  Google Scholar 

  36. Silva, A.P., et al.: 5GinFIRE: an end-to-end Open5G vertical network function ecosystem. Ad Hoc Netw. 93, 101895 (2019). https://doi.org/10.1016/j.adhoc.2019.101895. https://linkinghub.elsevier.com/retrieve/pii/S1570870518309387

    Article  Google Scholar 

  37. Tehrani, R.H., Vahid, S., Triantafyllopoulou, D., Lee, H., Moessner, K.: Licensed spectrum sharing schemes for mobile operators: a survey and outlook. IEEE Commun. Surv. Tutor. 18(4), 2591–2623 (2016). https://doi.org/10.1109/COMST.2016.2583499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarno Pinola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinola, J., Harjula, I., Flizikowski, A., Safianowska, M., Ahmad, A., Mhatre, S.S. (2020). EuWireless RAN Architecture and Slicing Framework for Virtual Testbeds. In: Gao, H., Li, K., Yang, X., Yin, Y. (eds) Testbeds and Research Infrastructures for the Development of Networks and Communications. TridentCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-030-43215-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43215-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43214-0

  • Online ISBN: 978-3-030-43215-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics