Skip to main content
Log in

The particle structure of the quantum mechanical Bose and Fermi gas

  • Probability Theory and Mathematical Statistics
  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In the framework of von Neumann’s description of measurements of discrete quantum observables we establish a one-to-one correspondence between symmetric statistical operators W of quantum mechanical systems and classical point processes κ W , thereby giving a particle picture of indistinguishable quantum particles. This holds true under irreducibility assumptions if we fix the underlying complete orthonormal system. The method of the Campbell measure is developed for such statistical operators; it is shown that the Campbell measure of a statistical operator W coincides with the Campbell measure of the corresponding point process κ W . Moreover, again under irreducibility assumptions, a symmetric statistical operator is completely determined by its Campbell measure. Themethod of the Campbell measure then is used to characterize Bose-Einstein and Fermi-Dirac statistical operators. This is an elementary introduction into the work of Fichtner and Freudenberg [10, 11] combined with the quantum mechanical investigations of [2] and the corresponding point process approach of [30]. It is based on the classical work of von Neumann [22], Segal, Cook and Chaiken [7, 8, 28] as well as Moyal [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arveson, An Invitation to C*-algebras (Springer, New-York, 1976).

    Book  MATH  Google Scholar 

  2. A. Bach, Indistinguishable Classical Particles (Lecture notes in physics, Springer, 1997).

    MATH  Google Scholar 

  3. F. A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966).

    MATH  Google Scholar 

  4. H. Boerner, Darstellungen von Gruppen (Springer, Berlin, 1955).

    Book  MATH  Google Scholar 

  5. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  6. G. Cassinelli, N. Zanghi, “Conditional probabilities in quantum theory I - conditioning with respect to a single event”, Nuovo cimento, 73, 237–245, 1983).

    Article  Google Scholar 

  7. J. M. Chaiken, “Finite-particle representations and states of the canonical commutation relations”, Ann. Phys., 42, 23–80, 1967).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. M. Cook, “The mathematics of second quantization”, Transactions AMS, 74, 222–245, 1953).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. B. Davies, Quantum Theory of Open Systems (Academic Press, NY, 1976.

    MATH  Google Scholar 

  10. K. H. Fichtner, W. Freudenberg, “Point processes and the position distribution of infinite Boson systems”, J. Statist. Phys., 47, 959–978, 1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. H. Fichtner, W. Freudenberg, “Characterizations of states of infinite Boson systems”, Commun. Math. Phys., 137, 315–357, 1991).

    Article  MATH  Google Scholar 

  12. K. H. Fichtner, G. Winkler, “Generalized Brownian motion, point processes and stochastic calculus for random fields”, Math.Nachr., 161, 291–307, 1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Fock, “Konfigurationsraum und zweite Quantelung”, Zeitschrift fu¨ r Physik, 75, 622–647, 1932).

    Article  MATH  Google Scholar 

  14. G. A. Goldin, U. Moschella, T. Sakuraba, “Self-similar processes and infinite-dimensional configuration spaces”, American Inst. Physics. Physics of atomic nuclei, 68, 1615–1684, 2005).

    MathSciNet  MATH  Google Scholar 

  15. K. Krickeberg, Point Processes. A Random Radon Measure Approach (Walter Warmuth Verlag, Nächst Neuendorf, 2014).

    Google Scholar 

  16. V. Liebscher, “Using weights for the description of states of Boson systems”, Commun. Stoch. Anal., 3, 175–195, 2009).

    MathSciNet  MATH  Google Scholar 

  17. J. Mecke, “Stationäre Maße auf lokal-kompakten Abelschen Gruppen”, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, 9, 36–58, 1967).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. E. Moyal, “Particle populations and number operators in Quantum Theory”, Adv. Appl. Prob., 4, 39–80, 1972).

    Article  MathSciNet  Google Scholar 

  19. B. Nehring, Construction of Classical and Quantum Gases. The method of cluster expansions, (Walter Warmuth Verlag, Nächst Neuendorf, 2013).

    MATH  Google Scholar 

  20. B. Nehring, H. Zessin, “The Papangelou Process. A concept for Fermion and Boson Processes”, Journal of ContemporaryMathematical Analysis, 46, 49–66, 2011).

    MATH  Google Scholar 

  21. B. Nehring, H. Zessin, “A representation of the moment measures of the general ideal Bose gas”, Math. Nachr., 285, 878–888, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer Verlag, Berlin, 1968).

    MATH  Google Scholar 

  23. M. Ozawa, “Conditional probability and a posteriori states in quantum mechanics”, Publ. RIM SKyotoUniv., 21, 279–295, 1985).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, Basel, 1992).

    Book  MATH  Google Scholar 

  25. M. Rafler, Gaussian Loop- and Pólya Processes. A point process approach (Universitätsverlag, Potsdam, 2009).

    Google Scholar 

  26. M. Rafler, “The Pólya sum process: Limit theorems for conditioned random fields”, J. Theoretical Probab., 26, 1097–1116, 2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Rafler, H. Zessin, “The logical postulates of Böge, Carnap and Johnson in the context of Papangelou processes”, J. Theoret. Probab., DOI 10.1007/s10959-014-0543-2, 2014.

  28. I. E. Segal, “Mathematical characterization of the physical vacuum for a linear Bose-Einstein field”, Illinois J.Math., 6, 500–523, 1962).

    MathSciNet  MATH  Google Scholar 

  29. H. Tamura, K.R. Ito, “A canonical ensemble approach to the Fermion/Boson random point processes and its applications”, Commun. Math. Phys., 263, 353–380, 2006).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Zessin, Classical Symmetric Point Processes (ICIMAF, La Habana, Cuba, 2010).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bach.

Additional information

Original Russian Text © A. Bach, H. Zessin, 2017, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2017, No. 1, pp. 3-25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, A., Zessin, H. The particle structure of the quantum mechanical Bose and Fermi gas. J. Contemp. Mathemat. Anal. 52, 14–29 (2017). https://doi.org/10.3103/S1068362317010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362317010034

Keywords

Navigation