Skip to main content
Log in

\(\hbox {K}_{1}\)-congruences for three-dimensional Lie groups

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We completely describe \(\hbox {K}_{1}({\mathbb {Z}}_p[\![{\mathcal {G}}_{\infty }]\!])\) and its localisations by using an infinite family of p-adic congruences, where \({\mathcal {G}}_{\infty }\) is any solvable p-adic Lie group of dimension 3. This builds on earlier work of Kato when \(\hbox {dim}({\mathcal {G}}_{\infty })=2\), and of the first named author and Lloyd Peters when \({\mathcal {G}}_{\infty } \cong {\mathbb {Z}}_p^{\times }\ltimes {\mathbb {Z}}_p^d\) with a scalar action of \({\mathbb {Z}}_p^{\times }\). The method exploits the classification of 3-dimensional p-adic Lie groups due to González-Sánchez and Klopsch, as well as the fundamental ideas of Kakde, Burns, etc. in non-commutative Iwasawa theory.

Résumé

Nous décrivons complètement K\(_{1}(\mathbb {Z}_p[\![\mathcal {G}_{\infty }]\!])\)et ses localisations en utilisant une famille infinie de congruencesp-adiques, où\(\mathcal {G}_{\infty }\)est un groupe de Lie résoluble de dimension trois. Ce travail s’appuie sur les résultats de Kato lorsque\({\hbox {dim}}(\mathcal {G}_{\infty })=2\),et du premier auteur et Lloyd Peters lorsque\(\mathcal {G}_{\infty }\cong \mathbb {Z}_p^{\times }\ltimes \mathbb {Z}_p^d\)avec une action scalaire de\(\mathbb {Z}_p^{\times }\). La méthode exploite la classification des groupes de Lie de dimension trois due à González-Sánchez et Klopsch, ainsi que les idées fondamentales de Kakde, Burns etc. en théorie d’Iwasawa non-commutative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouganis, A.: Special values of \(L\)-functions and false Tate curve extensions. J. Lond. Math. Soc. 82, 596–620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burns, D.: On main conjectures in non-commutative Iwasawa theory and related conjectures. J. Reine Angew. Math. 698, 105–159 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Burns, D., Venjakob, O.: On descent theory and main conjectures in non-commutative Iwasawa theory. J. Inst. Math. Jussieu 10, 59–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta \(p\)-adiques. Invent. Math. 51(1), 29–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chao, Q.: Iwasawa theory over solvable three-dimensional \(p\)-adic Lie extensions, PhD Thesis, Waikato University (2018)

  6. Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The GL\(_2\) main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES 101, 163–208 (2005)

    Article  MATH  Google Scholar 

  7. Noncommutative Iwasawa main conjectures over totally real fields. In: Coates, J., Schneider, P., Sujatha, R., Venjakob, O. (eds.) Proceedings of the Münster Workshop on Iwasawa Theory, vol. 29. Springer Verlag PROMS (2013)

  8. Darmon, H., Tian, Ye: Heegner points over towers of Kummer extensions. Can. J. Math. 62(5), 1060–1081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delbourgo, D., Lei, A.: Estimating the growth in Mordell–Weil ranks and Shafarevich–Tate groups over Lie extensions. Raman. J. 43(1), 29–68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delbourgo, D., Peters, L.: Higher order congruences amongst Hasse–Weil \(L\)-values. J. Aust. Math. Soc. 98, 1–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delbourgo, D., Ward, T.: Non-abelian congruences between \(L\)-values of elliptic curves. Ann. de l’Inst. Fourier 58(3), 1023–1055 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delbourgo, D., Ward, T.: The growth of CM periods over false Tate extensions. Exp. Math. 19(2), 195–210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delbourgo, D.: On the growth of \(\mu \)-invariants and \(\lambda \)-invariants attached to motives, work in progress

  14. Deligne, P., Ribet, K.: Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. González-Sánchez, J., Klopsch, B.: Analytic pro-\(p\) groups of small dimensions. J. Group Theory 12(5), 711–734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hara, T.: Iwasawa theory of totally real fields for certain non-commutative \(p\)-extensions. J. Number Theory 130, 1068–1097 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kakde, M.: The main conjecture of Iwasawa theory for totally real fields. Invent. Math. 193(3), 539–626 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kakde, M.: Some congruences for non-CM elliptic curves, in ‘Elliptic curves, modular forms and Iwasawa theory’. Springer Proc. Math. Stat. 188, 295–309 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, K.: \(K_1\) of some non-commutative completed group rings. K-Theory 34, 99–140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, K.: Iwasawa theory of totally real fields for Galois extensions of Heisenberg type, unpublished preprint (2006)

  21. Kim, D.: On the transfer congruence between \(p\)-adic Hecke \(L\)-functions. Cambr. J. Math. 3(3), 355–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oliver, R.: Whitehead groups of finite groups, LMS Lecture Note Series vol. 132, Cambridge University Press (1988)

  23. Ritter, J., Weiss, A.: On the ‘main conjecture’ of equivariant Iwasawa theory. J. Am. Math. Soc. 24, 1015–1050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serre, J.-P.: Linear representations of finite groups, Springer Verlag GTM vol. 42, first edition (1977)

Download references

Acknowledgements

The authors are grateful to both Antonio Lei and Lloyd Peters for numerous discussions about non-commutative congruences. They were also hugely inspired by the work of Mahesh Kakde, to which many arguments in this paper owe a great debt. Lastly they thank Ian Hawthorn for his friendly guidance during some difficult times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Delbourgo.

Additional information

Qin Chao: To form a part of this author’s PhD thesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delbourgo, D., Chao, Q. \(\hbox {K}_{1}\)-congruences for three-dimensional Lie groups. Ann. Math. Québec 43, 161–211 (2019). https://doi.org/10.1007/s40316-018-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-018-0100-y

Keywords

Mathematics Subject Classification

Navigation