Skip to main content
Log in

Compressed Sensing with Frames and Sparsity in Levels Class

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Recently, lots of studies demonstrated that the signals are not only sparse in some system (e.g. shearlets) but also reveal a certain structure such as sparsity in levels. Therefore, sampling strategy is designed as a variable subsampling strategy in order to use this extra structure, for example magnetic resonance imaging (MRI) and etc. In this paper, we investigate the uniform recovery guarantees on the signals which possess sparsity in levels with respect to a general dual frame. First, we prove that the stable and robust recovery is possible when the weighted \(l^{2} \)-robust null space property in levels is satisfied. Second, we establish sufficient conditions under which subsampled isometry satisfies the weighted \(l^{2} \)-robust null space property in levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adcock, B., Hansen, A.C.: Compressive Imaging: Structure, Sampling, Learning. Cambridge University Press, Cambridge (2021)

    Book  Google Scholar 

  2. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the coherence barrier: a new theory for compressed sensing. Forum Math. Sigma 5 (2017)

  3. Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE. Appl. Comput. Harmon. Anal. 50, 105–146 (2021)

    Article  MathSciNet  Google Scholar 

  4. Brugiapaglia, S., Dirksen, S., Jung, H.C., Rauhut, H.: Sparse recovery in bounded Riesz systems with applications tonumerical methods for PDEs. Appl. Comput. Harmon. Anal. 53, 231–269 (2021)

    Article  MathSciNet  Google Scholar 

  5. Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)

    Article  MathSciNet  Google Scholar 

  6. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  Google Scholar 

  7. Candès, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2000)

    Article  MathSciNet  Google Scholar 

  8. Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  9. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 157–181 (2008)

    Article  MathSciNet  Google Scholar 

  11. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)

    Article  MathSciNet  Google Scholar 

  12. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  13. Dong, B., Shen, Z.: MRA based wavelet frames and applications. In: Summer Program on the Mathematics of Image Processing. IAS Lecture Notes Series. Park City Mathematics Institute, (2010)

    Google Scholar 

  14. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Foucart, S.: Stability and robustness of l1-minimizations with Weibull matrices and redundant dictionaries. Linear Algebra Appl. 441, 4–21 (2014)

    Article  MathSciNet  Google Scholar 

  16. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing, Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2013)

    Book  Google Scholar 

  17. Genzel, M., Kutyniok, G., März, M.: \(l^{1}\)-analysis minimization and generalized (co-)sparsity: when does recovery succeed? Appl. Comput. Harmon. Anal. (2021)

  18. Kabanava, M., Rauhut, H.: Analysis l1-recovery with frames and Gaussian measurements. Acta Appl. Math. 140, 173–195 (2015)

    Article  MathSciNet  Google Scholar 

  19. Krahmer, F., Needell, D., Ward, R.: Compressive sensing with redundant dictionaries and structured measurements, SIAM J. Math. Anal. 47(6), 4606–4629 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kutyniok, G., Lim, W.-Q.: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163, 1564–1589 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kutyniok, G., Lim, W.-Q.: Dualizable shearlet frames and sparse approximation. Constr. Approx. 44, 53–86 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kutyniok, G., Lim, W.-Q.: Optimal compressive imaging of Fourier data. SIAM J. Imaging Sci. 11(1), 507–546 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Adcock, B.: Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class. Appl. Comput. Harmon. Anal. 4, 453–477 (2019)

    Article  MathSciNet  Google Scholar 

  24. Liu, Y.L., Mi, T.B., Li, S.D.: Compressed sensing with general frames via optimal-dul-based l1 –analysis. IEEE Trans. Inf. Theory 58(7), 4201–4214 (2012)

    Article  Google Scholar 

  25. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34(1), 30–56 (2013)

    Article  MathSciNet  Google Scholar 

  26. Poon, C.: Structure dependent sampling in compressed sensing: theoretical guarantees for tight frames. Appl. Comput. Harmon. Anal. 42(3), 402–451 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 5, 2210–2219 (2008)

    Article  MathSciNet  Google Scholar 

  28. Romanm, B., Adcock, B., Hansen, A.: On asymptotic structure in compressed sensing (2014). arXiv:1406.4178v2 [math.FA]

  29. Sin, M., Ri, K., Kim, K.: Existence and uniqueness of solution for coupled fractional mean-field forward-backward stochastic differential equations. Stat. Probab. Lett. 190(6), 109–119 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol-Song Rim.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, CG., Rim, CS. Compressed Sensing with Frames and Sparsity in Levels Class. Acta Appl Math 194, 4 (2024). https://doi.org/10.1007/s10440-024-00684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00684-9

Keywords

Mathematics Subject Classification

Navigation