Skip to main content
Log in

Multimodal frequency and phase velocity spectrum of shear wave in microstructural flexomagnetic plate loaded with complex fluid

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Magnetoelastic (ME) effect-based sensors have been innovatively engineered for diverse applications, ranging from ensuring food safety to facilitating immunoassays and structural health monitoring. These cutting-edge devices leverage piezomagnetic/flexomagnetic plates to propagate waves, with the top surface of the plate frequently encountering contact with liquids. This article delves into the intricacies of analytically modeling the flexomagnetic effect, focusing on strain gradients within a finite-thickness plate. Additionally, it investigates the dispersion of shear horizontal (SH) waves within the same flexomagnetic plate when immersed in a Newtonian liquid region. The study meticulously considers the influences of plate thickness, flexomagnetic coefficient, and the viscosity of the liquid, particularly for a Cobalt-ferrite plate. The obtained dispersion equations are used to plot phase velocity spectra and frequency spectra. The implications of this research extend to optimizing surface acoustic wave sensors (SAW) designed for underwater applications, bio-sensing, and chemo-sensing. The comprehensive understanding of the dispersion characteristics of SH waves in piezomagnetic plates with flexomagnetic effect equips researchers and engineers to enhance the performance and efficiency of SAW devices across a spectrum of under-liquid scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88(23), 232902 (2006)

    Article  Google Scholar 

  2. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79(16), 165433 (2009)

    Article  Google Scholar 

  3. Sidhardh, S., Ray, M.: Flexomagnetic response of nanostructures. J. Appl. Phys. 124(24), 244101 (2018)

    Article  Google Scholar 

  4. Shi, Y., Li, N., Ye, J., Ma, J.: Enhanced magnetoelectric response in nanostructures due to flexoelectric and flexomagnetic effects. J. Magn. Magn. Mater. 521, 167523 (2021)

    Article  Google Scholar 

  5. Malikan, M., Uglov, N.S., Eremeyev, V.A.: On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int. J. Eng. Sci. 157, 103395 (2020)

    Article  MathSciNet  Google Scholar 

  6. Malikan, M., Eremeyev, V.A.: Flexomagnetic response of buckled piezomagnetic composite nanoplates. Compos. Struct. 267, 113932 (2021)

    Article  Google Scholar 

  7. Qi, L.: Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Phys. Scr. 94(6), 065803 (2019)

    Article  Google Scholar 

  8. Guha, S., Singh, A.K.: Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces. Eur J Mech-A/Solids 88, 104242 (2021)

    Article  MathSciNet  Google Scholar 

  9. Singh, S., Singh, A., Guha, S.: Impact of interfacial imperfections on the reflection and transmission phenomenon of plane waves in a porous-piezoelectric model. Appl. Math. Model. 100, 656–675 (2021)

    Article  MathSciNet  Google Scholar 

  10. Länge, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391, 1509–1519 (2008)

    Article  Google Scholar 

  11. Josse, F., Shana, Z.A., Radtke, D.E., Haworth, D.T.: Analysis of piezoelectric bulk-acoustic-wave resonators as detectors in viscous conductive liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(5), 359–368 (1990)

    Article  Google Scholar 

  12. Lu, Y., Zhang, H., Qian, J., Song, Y., Wang, B., Sun, H.: Equivalent circuit models for magnetoelastic resonance sensors with various surface loadings. IEEE Sens. J. 23(4), 3675–3684 (2023)

    Article  Google Scholar 

  13. Lee, Y.-C., Kuo, S.H.: Leaky Lamb wave of a piezoelectric plate subjected to conductive fluid loading: theoretical analysis and numerical calculation. J. Appl. Phys. 100(7), 073519 (2006)

    Article  Google Scholar 

  14. El Baroudi, A., Le Pommellec, J.-Y.: Surface wave in a Maxwell liquid-saturated poroelastic layer. Appl. Acoust. 159, 107076 (2020)

    Article  Google Scholar 

  15. El Baroudi, A., Le Pommellec, J.Y.: Viscoelastic fluid effect on the surface wave propagation. Sens. Actuat. A 291, 188–195 (2019)

    Article  Google Scholar 

  16. Billon, F., El Baroudi, A.: Mathematical modelling of Love waves propagation in viscoelastic waveguide loaded with complex fluids. Appl. Math. Model. 96, 559–569 (2021)

    Article  MathSciNet  Google Scholar 

  17. Li, D., Li, S., Zhang, C., Chen, W.: Propagation characteristics of shear horizontal waves in piezoelectric semiconductor nanoplates incorporating surface effect. Int. J. Mech. Sci. 247, 108201 (2023)

    Article  Google Scholar 

  18. Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. A 376(45), 3281–3286 (2012)

    Article  Google Scholar 

  19. Sladek, J., Sladek, V., Xu, M., Deng, Q.: A cantilever beam analysis with flexomagnetic effect. Meccanica 56(9), 2281–2292 (2021)

    Article  MathSciNet  Google Scholar 

  20. Kiełczyński, P., Szalewski, M., Balcerzak, A., Wieja, K.: Dispersion curves of love waves in elastic waveguides loaded with a Newtonian liquid layer of finite thickness. Archiv. Acoust. 45, 19–27 (2020)

    Google Scholar 

  21. Thompson, M., Dhaliwal, G.K., Arthur, C.L., Calabrese, G.: The potential of the bulk acoustic wave device as a liquid-phase immunosensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(2), 127–135 (1987)

    Article  Google Scholar 

  22. Yang, W., Deng, Q., Liang, X., Shen, S.: Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Mater. Struct. 27(8), 085003 (2018)

    Article  Google Scholar 

  23. Shu, L., Wei, X., Pang, T., Yao, X., Wang, C.: Symmetry of flexoelectric coefficients in crystalline medium. J. Appl. Phys. 110(10), 104106 (2011)

    Article  Google Scholar 

  24. Sahu, S.A., Biswas, M.: Mass loading effect on surface wave in piezoelectric-flexoelectric dielectric plate clamped on fiber-reinforced rigid base. Int. J. Mech. Mater. Des. 18(4), 919–938 (2022)

    Article  Google Scholar 

  25. Yang, W., Liang, X., Shen, S.: Love waves in layered flexoelectric structures. Phil. Mag. 97(33), 3186–3209 (2017)

    Article  Google Scholar 

  26. Malikan, M., Eremeyev, V.A., Żur, K.K.: Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry 12(12), 1935 (2020)

    Article  Google Scholar 

  27. Nie, G., An, Z., Liu, J.: SH-guided waves in layered piezoelectric/piezomagnetic plates. Prog. Nat. Sci. 19(7), 811–816 (2009)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev A. Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 For magnetically short case

\(Q_{11}=-\eta \lambda ^l \exp {-\lambda ^l}h_1,\) \(Q_{12} = \left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1 e^{-m_1 h_1}\), \(Q_{13} = -\left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1 e^{m_1 h_1}\), \(Q_{14} = \left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2 e^{m_2 h_1},\) \(Q_{15} = -\left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2 e^{m_2 h_1}.\)

\(Q_{21}=\exp {\lambda h_1},\) \(Q_{22}=i c k_1 s\exp {-m_1 h_1},\) \(Q_{23}=i c k_1 s\exp {m_1 h_1},\) \(Q_{24}=i c k_1 t\exp {-m_2 h_1},\) \(Q_{25}=i c k_1 t\exp {-m_2 h_1}.\)

\(Q_{32}=\left( -\mu ^p_{11}+sh^p _{15}+ik_1s\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_1 e^{-m_1 h_1}\), \(Q_{33}=-\left( -\mu ^p_{11}+sh^p _{15}+ik_1s\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_1 e^{m_1 h_1}\), \(Q_{34}=\left( -\mu ^p_{11}+th^p _{15}+ik_1t\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_2 e^{-m_2 h_1}\), \(Q_{35}=-\left( -\mu ^p_{11}+th^p _{15}+ik_1t\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_2 e^{m_2 h_1},\)

\(Q_{42} = \left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1\), \(Q_{43} = -\left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1\), \(Q_{44} = \left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2\) \(Q_{45} = -\left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2,\)

\(Q_{32}=\left( -\mu ^p_{11}+sh^p _{15}+ik_1s\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_1 \), \(Q_{33}=-\left( -\mu ^p_{11}+sh^p _{15}+ik_1s\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_1 \), \(Q_{34}=\left( -\mu ^p_{11}+th^p _{15}+ik_1t\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_2 \), \(Q_{35}=-\left( -\mu ^p_{11}+th^p _{15}+ik_1t\left( h_{41}+\frac{h_{52}}{2}\right) \right) m_2,\)

1.2 For magnetically open case

\(T_{11}=-\eta \lambda ^l \exp {-\lambda ^l}h_1,\) \(T_{12} = \left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1 e^{-m_1 h_1}\), \(T_{13} = -\left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1 e^{m_1 h_1}\), \(T_{14} = \left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2 e^{m_2 h_1},\) \(T_{15} = -\left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2 e^{m_2 h_1}.\)

\(T_{21}=\exp {\lambda h_1},\) \(T_{22}=i c k_1 s\exp {-m_1 h_1},\) \(T_{23}=i c k_1 s\exp {m_1 h_1},\) \(T_{24}=i c k_1 t\exp {-m_2 h_1},\) \(T_{25}=i c k_1 t\exp {-m_2 h_1}.\)

\(T_{32}= e^{-m_1 h_1}\), \(T_{33}= e^{m_1 h_1}\), \(T_{34}= e^{-m_2 h_1}\), \(T_{35}= e^{m_2 h_1},\)

\(T_{42} = \left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1\), \(T_{43} = -\left( sc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_1\), \(T_{44} = \left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2\) \(T_{45} = -\left( tc^p_{44}+h^p _{15}-ik_1\frac{h_{41}}{2}\right) m_2,\) \(T_{52}=1\) \(T_{53}=1\), \(T_{54}=1\), \(T_{55}=1\),

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, M., Sahu, S.A. Multimodal frequency and phase velocity spectrum of shear wave in microstructural flexomagnetic plate loaded with complex fluid. Acta Mech 235, 3219–3230 (2024). https://doi.org/10.1007/s00707-024-03876-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03876-4

Navigation