Skip to main content
Log in

Exploring curved superspace

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We systematically analyze Riemannian manifolds \( \mathcal{M} \) that admit rigid supersymmetry, focusing on four-dimensional \( \mathcal{N} = {1} \) theories with a U(1) R symmetry. We find that \( \mathcal{M} \) admits a single supercharge, if and only if it is a Hermitian manifold. The supercharge transforms as a scalar on \( \mathcal{M} \). We then consider the restrictions imposed by the presence of additional supercharges. Two supercharges of opposite R-charge exist on certain fibrations of a two-torus over a Riemann surface. Upon dimensional reduction, these give rise to an interesting class of supersymmetric geometries in three dimensions. We further show that compact manifolds admitting two supercharges of equal R-charge must be hyperhermitian. Finally, four supercharges imply that \( \mathcal{M} \) is locally isometric to \( {\mathcal{M}_3} \times \mathbb{R} \), where \( {\mathcal{M}_3} \) is a maximally symmetric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B. Lawson and M.L. Michelsohn, Spin geometry, Princeton mathematical series volume 38, Princeton University Press, Princeton U.S.A. (1990).

  2. A. Moroianu, Parallel and Killing spinors on spin(c) manifolds, Commun. Math. Phys. 187 (1997) 417 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. Witten, Supersymmetric Yang-Mills theory on a four manifold, J. Math. Phys. 35 (1994) 5101 [hep-th/9403195] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner, Germany (1991).

    MATH  Google Scholar 

  5. T. Friedrich, Dirac operators in riemannian geometry, American Mathematical Society, Providence U.S.A. (2000).

    MATH  Google Scholar 

  6. C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

    Article  ADS  Google Scholar 

  7. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Lü, C. Pope and J. Rahmfeld, A construction of Killing spinors on S n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. F. Dolan, V. Spiridonov and G. Vartanov, From 4D superconformal indices to 3D partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. A. Gadde and W. Yan, Reducing the 4D index to the S 3 partition function, arXiv:1104.2592 [INSPIRE].

  16. Y. Imamura, Relation between the 4D superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

    ADS  Google Scholar 

  18. D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, arXiv:1111.6930 [INSPIRE].

  20. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity, Phys. Lett. B 105 (1981) 353 [INSPIRE].

    ADS  Google Scholar 

  22. M. Sohnius and P.C. West, The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity, Nucl. Phys. B 198 (1982) 493 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. K. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].

    ADS  Google Scholar 

  24. S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].

    ADS  Google Scholar 

  25. T.T. Dumitrescu, G. Festuccia, and N. Seiberg, to appear.

  26. B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4D riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Ohta and Y. Yoshida, Non-abelian localization for supersymmetric Yang-Mills-Chern-Simons theories on seifert manifold, arXiv:1205.0046 [INSPIRE].

  30. E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. E. Witten, Mirror manifolds and topological field theory, in Mirror symmetry I, S.T. Yau ed., American Mathematical Society, Providence (1998), hep-th/9112056 [INSPIRE].

    Google Scholar 

  32. C.P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988) 157.

    MathSciNet  MATH  Google Scholar 

  33. A. Karlhede and M. Roček, Topological quantum field theory and N = 2 conformal supergravity, Phys. Lett. B 212 (1988) 51 [INSPIRE].

    ADS  Google Scholar 

  34. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Class. Quant. Grav. 18 (2001) 1089 [math/0010038] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997) 159.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Sen, Supersymmetry in the space-time R × S 3, Nucl. Phys. B 284 (1987) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  40. Y. Kosmann, Dérivées de Lie des spineurs, Ann. Mat. Pura Appl. 91 317 (1972) 395.

    MathSciNet  Google Scholar 

  41. N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    Google Scholar 

  46. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2003).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas T. Dumitrescu.

Additional information

ArXiv ePrint: 1205.1115

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, T.T., Festuccia, G. & Seiberg, N. Exploring curved superspace. J. High Energ. Phys. 2012, 141 (2012). https://doi.org/10.1007/JHEP08(2012)141

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)141

Keywords

Navigation