Skip to main content
Log in

Dynamics of a multi-strain HIV/AIDS epidemic model with treatment and its adherence

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study presents a novel two-strain nonlinear mathematical model to assess the impact of treatment availability and adherence, on the spread of human immunodeficiency virus (HIV) in a community. First, we establish the well-posedness of the proposed model in an epidemiological context. The basic reproduction number for both the strains is determined by the next-generation matrix approach. The local and global analysis of existent equilibrium points using stability and bifurcation theory suggests that the drug-sensitive infected population faces competitive exclusion at lower relative transmission rates of this strain. For higher relative transmission rates of the infection, both infected populations coexist for a long time. The system exhibits transcritical bifurcation and Hopf bifurcation at multiple points with respect to various model parameters. Finally, we validate all the analytical results with an extensive numerical analysis using MATLAB R2023b. In summary, this study provides various conditions for applying different strategies to control the overall disease burden from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The sources of the data used have been clearly indentified in the paper itself. Further, the data in a collated form will be made available on reasonable request].

References

  1. L.G. Bekker, C. Beyrer, N. Mgodi, S.R. Lewin, S. Delany-Moretlwe, B. Taiwo, M.C. Masters, J.V. Lazarus, HIV infection. Nat. Rev. Dis. Primers 9(1), 42 (2023)

    Article  Google Scholar 

  2. O.G. Pybus, A. Rambaut, Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10(8), 540–550 (2009)

    Article  Google Scholar 

  3. G.W. Harper, A.J. Riplinger, L.C. Neubauer, A.G. Murphy, J. Velcoff, A.K. Bangi, Ecological factors influencing HIV sexual risk and resilience among young people in rural Kenya: implications for prevention. Health Educ. Res. 29(1), 131–146 (2014)

    Article  Google Scholar 

  4. K.A. Lythgoe, L. Pellis, C. Fraser, Is HIV short-sighted? Insights from a multistrain nested model. Evolution 67(10), 2769–2782 (2013)

    Article  Google Scholar 

  5. P. Wu, H. Zhao, Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl. Math. Model. 84, 240–64 (2020)

    Article  MathSciNet  Google Scholar 

  6. R.A. Weiss, How does HIV cause AIDS? Science 260(5112), 1273–1279 (1993)

    Article  ADS  Google Scholar 

  7. E.A. Hernandez-Vargas, R.H. Middleton, Modeling the three stages in HIV infection. J. Theor. Biol. 320, 33–40 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.C. Miller, N.E. Rosenberg, S.E. Rutstein, K.A. Powers, The role of acute and early HIV infection in the sexual transmission of HIV. Curr. Opin. HIV AIDS 5(4), 277 (2010)

    Article  Google Scholar 

  9. K. Gurski, K. Hoffman, Staged HIV transmission and treatment in a dynamic model with long-term partnerships. J. Math. Biol. 86(5), 74 (2023)

    Article  MathSciNet  Google Scholar 

  10. L. Cai, X. Li, M. Ghosh, B. Guo, Stability analysis of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229(1), 313–323 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Poorolajal, E. Hooshmand, H. Mahjub, N. Esmailnasab, E. Jenabi, Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis. Public Health 139, 3–12 (2016)

    Article  Google Scholar 

  12. F. Nakagawa, M. May, A. Phillips, Life expectancy living with HIV: recent estimates and future implications. Curr. Opin. Infect. Dis. 26(1), 17–25 (2013)

    Article  Google Scholar 

  13. S. Teeraananchai, S.J. Kerr, J. Amin, K. Ruxrungtham, M.G. Law, Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV Med. 18(4), 256–266 (2017)

    Article  Google Scholar 

  14. J.B. Nachega, V.C. Marconi, G.U. van Zyl, E.M. Gardner, W. Preiser, S.Y. Hong, E.J. Mills, R. Gross, HIV treatment adherence, drug resistance, virologic failure: Evolving concepts. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders) 11(2):167–174 (2011)

  15. A.N. Shchemelev, A.V. Semenov, Y.V. Ostankova, E.B. Zueva, D.E. Valutite, D.A. Semenova, V.S. Davydenko, A.A. Totolian, Genetic diversity and drug resistance mutations of HIV-1 in Leningrad Region. J. Microbiol. Epidemiol. Immunobiol. 99(1), 28–37 (2022)

    Article  Google Scholar 

  16. M.M. Santoro and C.F. Perno, HIV-1 genetic variability and clinical implications. International Scholarly Research Notices 2013 (2013)

  17. A. Rambaut, D. Posada, K.A. Crandall, E.C. Holmes, The causes and consequences of HIV evolution. Nat. Rev. Genet. 5(1), 52–61 (2004)

    Article  Google Scholar 

  18. D.N. Makau, S. Lycett, M. Michalska-Smith, I.A.D. Paploski, M.C.-J. Cheeran, M.E. Craft, R.R. Kao, D.C. Schroeder, A. Doeschl-Wilson, K. VanderWaal, Ecological and evolutionary dynamics of multi-strain RNA viruses. Nat. Ecol. Evol. 6(10), 1414–1422 (2022)

    Article  Google Scholar 

  19. K.K. Byrd, J.G. Hou, R. Hazen, H. Kirkham, S. Suzuki, P.G. Clay, T. Bush, N.M. Camp, P.J. Weidle, A. Delpino, Antiretroviral adherence level necessary for HIV viral suppression using real-world data. JAIDS J. Acquir. Immune Defic. Syndr. 82(3), 245–51 (2019)

    Article  Google Scholar 

  20. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115(772), 700–721 (1927)

    Article  ADS  Google Scholar 

  21. X. Ren, Y. Tian, L. Liu, X. Liu, A reaction–diffusion within-host HIV model with cell-to-cell transmission. J. Math. Biol. 76(7), 1831–1872 (2018)

    Article  MathSciNet  Google Scholar 

  22. H.C. Tuckwell, E. Le Corfec, A stochastic model for early HIV-1 population dynamics. J. Theor. Biol. 195(4), 451–463 (1998)

    Article  ADS  Google Scholar 

  23. G. Chowell, D. Hincapie-Palacio, J. Ospina, B. Pell, A. Tariq, S. Dahal, S. Moghadas, A. Smirnova, L. Simonsen, C. Viboud, Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLoS Curr. (2016). https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583

    Article  Google Scholar 

  24. B. Pell, Y. Kuang, C. Viboud, G. Chowell, Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics 22, 62–70 (2018)

    Article  Google Scholar 

  25. S. Shrestha, A.A. King, P. Rohani, Statistical inference for multi-pathogen systems. PLoS Comput. Biol. 7(8), e1002135 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.E. Stockdale, T. Kypraios, P.D. O’Neill, Modelling and bayesian analysis of the Abakaliki smallpox data. Epidemics 19, 13–23 (2017)

    Article  Google Scholar 

  27. C. Gupta, N. Tuncer, M. Martcheva, A network immuno-epidemiological HIV model. Bull. Math. Biol. 83, 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  28. M. Liu, G. Sun, Z. Jin, T. Zhou, An analysis of transmission dynamics of drug-resistant disease on scale-free networks. Appl. Math. Comput. 222, 177–189 (2013)

    MathSciNet  Google Scholar 

  29. A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Rong, Z. Feng, A.S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull. Math. Biol. 69(6), 2027–2060 (2007)

    Article  MathSciNet  Google Scholar 

  31. R.M. Anderson, G.F. Medley, R.M. May, A.M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. Math. Med. Biol. 3(4), 229–263 (1986)

    Article  MathSciNet  Google Scholar 

  32. I. Ghosh, P.K. Tiwari, S. Samanta, I.M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Math. Biosci. 306, 160–169 (2018)

    Article  MathSciNet  Google Scholar 

  33. E.D. Gurmu, B.K. Bole, P.R. Koya, Mathematical modelling of HIV/AIDS transmission dynamics with drug resistance compartment. Am. J. Appl. Math. 8(1), 34–45 (2020)

    Article  Google Scholar 

  34. R.M. May, R.M. Anderson, Commentary transmission dynamics of HIV infection. Nature 326(137), 10–1038 (1987)

    Google Scholar 

  35. A. Poonia, S.P. Chakrabarty, Two strains and drug adherence: an HIV model in the paradigm of community transmission. Nonlinear Dyn. 108(3), 2767–2792 (2022)

    Article  Google Scholar 

  36. O. Sharomi, A.B. Gumel, Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn. 2(3), 323–345 (2008)

    Article  MathSciNet  Google Scholar 

  37. C.J. Silva, D.F.M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecol. Complex. 30, 70–75 (2017)

    Article  Google Scholar 

  38. L. Xue, K. Zhang, H. Wang, Long-term forecast of HIV/AIDS epidemic in China with fear effect and 90–90-90 strategies. Bull. Math. Biol. 84(11), 132 (2022)

    Article  MathSciNet  Google Scholar 

  39. B. Zhou, B. Han, D. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of a staged progression HIV/AIDS infection model with nonlinear stochastic perturbations. Nonlinear Dyn. 107(4), 3863–3886 (2022)

    Article  Google Scholar 

  40. M. Fudolig, R. Howard, The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE 15(12), e0243408 (2020)

    Article  Google Scholar 

  41. E.A. Kendall, M.O. Fofana, D.W. Dowdy, Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir. Med. 3(12), 963–972 (2015)

    Article  Google Scholar 

  42. M.A. Kuddus, E.S. McBryde, A.I. Adekunle, L.J. White, M.T. Meehan, Mathematical analysis of a two-strain disease model with amplification. Chaos Solitons Fractals 143, 110594 (2021)

    Article  MathSciNet  Google Scholar 

  43. S.M. Blower, A.N. Aschenbach, H.B. Gershengorn, J.O. Kahn, Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7(9), 1016–1020 (2001)

    Article  Google Scholar 

  44. J.A. Yorke, Invariance for ordinary differential equations. Math. Syst. Theory 1(4), 353–372 (1967)

    Article  MathSciNet  Google Scholar 

  45. P. Van den Driessche, J. Watmough, Further notes on the basic reproduction number. Math. Epidemiol. 1945, 159–178 (2008)

    Article  MathSciNet  Google Scholar 

  46. X. Yang, Generalized form of Hurwitz–Routh criterion and Hopf bifurcation of higher order. Appl. Math. Lett. 15(5), 615–621 (2002)

    Article  MathSciNet  Google Scholar 

  47. G.T. Gilbert, Positive definite matrices and Sylvester’s criterion. Am. Math. Mon. 98(1), 44–46 (1991)

    Article  MathSciNet  Google Scholar 

  48. L. Perko, Differential Equations and Dynamical Systems, volume 7. Springer Science & Business Media (2013)

  49. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

    Article  MathSciNet  Google Scholar 

  50. W.-M. Liu, Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  Google Scholar 

  51. United Nations- World Population Prospectus (2022). https://population.un.org/wpp/Download/Standard/Population/

  52. K.M. Stadeli, D.D. Richman, Rates of emergence of HIV drug resistance in resource-limited settings: a systematic review. Antivir. Ther. 18(1), 115–123 (2013)

    Article  Google Scholar 

  53. Global HIV & AIDS statistics - Fact sheet, 2022. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (2022)

  54. C. Benson, X. Wang, K.J. Dunn, N. Li, L. Mesana, J. Lai, E.Y. Wong, W. Chow, H. Hardy, J. Song et al., Antiretroviral adherence, drug resistance, and the impact of social determinants of health in HIV-1 patients in the US. AIDS Behav. 24, 3562–3573 (2020)

    Article  Google Scholar 

  55. P. Ammaranond, P. Cunningham, R. Oelrichs, K. Suzuki, C. Harris, L. Leas, A. Grulich, D.A. Cooper, A.D. Kelleher, Rates of transmission of antiretroviral drug resistant strains of HIV-1. J. Clin. Virol. 26(2):153–161 (2003)

  56. J.M. Munita, C.A. Arias, Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2) (2016)

  57. P. Ngina, R.W. Mbogo, L.S. Luboobi, HIV drug resistance: insights from mathematical modelling. Appl. Math. Model. 75, 141–61 (2019)

    Article  MathSciNet  Google Scholar 

  58. X. Jin, Z. Wang, Z. Zhang, W. Hui, Y. Ruan, C. Zhang, R. Kang, H. Xing, J. Lou, The transmission of drug-resistant strains of HIV in heterosexual populations based on genetic sequences. PLoS ONE 16(12), e0259023 (2021)

    Article  Google Scholar 

  59. M. Enriquez, D.S. McKinsey, Strategies to improve HIV treatment adherence in developed countries: clinical management at the individual level. HIV/AIDS-Res. Palliat. Care 3, 45–51 (2011)

    Article  Google Scholar 

  60. J.M. Simoni, K. Rivet Amico, C.R. Pearson, R. Malow, Strategies for promoting adherence to antiretroviral therapy: a review of the literature. Curr. Infect. Dis. Rep. 10(6), 515–521 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The research work of Ashish Poonia was supported by the Council of Scientific and Industrial Research (CSIR), India (File Number 09/731(0175)/2019-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha P. Chakrabarty.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonia, A., Chakrabarty, S.P. Dynamics of a multi-strain HIV/AIDS epidemic model with treatment and its adherence. Eur. Phys. J. Plus 139, 769 (2024). https://doi.org/10.1140/epjp/s13360-024-05566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05566-5

Navigation