Skip to main content
Log in

Dymnikova black hole in higher dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We generalized Dymnikova black hole solutions in higher dimensional framework for both the Einstein’s general theory of relativity (GR) and Rastall theory. Dymnikova obtained non-singular black hole (NSBH) in the usual four dimensions in GR. The NSBH solution is presented here in the framework of higher dimensional GR and Rastall theory determining the stress energy tensor. The NSBH is found to have a finite radial pressure at the center when the spacetime dimension \(D\ge 4\). The transverse pressure is finite at the center for a set of model parameters which is found to increase with the increase in the spacetime dimensions. The solutions of the higher dimensional field equations in both the theories reduce to the Schwarzschild black hole solution asymptotically in the usual four and beyond which are singularity free. The different features of the non-singular black holes in GR and in Rastall gravity are studied. It is found that the nonsingular black holes exist in both the gravitational theories with different types of matter configurations. We also study the trajectories of the massive and massless particles around the static non-singular black holes. The radii of the photon spheres around the black hole are determined and found that those are functions of the number of extra dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. LIGO Scientific. Virgo, B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Virgo, LIGO Scientific, B.P. Abbott et al, Phys. Rev. Lett. 116: 221101 (2016); [Erratum: Phys. Rev. Lett. 121: 129902 (2018)

  3. LIGO Scientific. Virgo, B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  4. LIGO Scientific. Virgo, B.P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  5. LIGO Scientific, VIRGO, B.P. Abbott et al, Phys. Rev. Lett. 118 221101 (2017), [Erratum: Phys. Rev. Lett. 121, 129901 (2018)]

  6. L.I.G.O. Scientific, B.P. Abbott. Virgo et al., Astrophys. J. 851, L35 (2017)

    Article  ADS  Google Scholar 

  7. A.D. Sakharov, Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  8. E.B. Gliner, Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  9. J Bardeen, Proc. GR5, Tiflis, USSR (1968)

  10. I. Dymnikova, Gen. Rel. Gravity 24, 235 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. K.A. Bronnikov, J.C. Fabris, O.F. Piattella, E.C. Santos, Gen. Rel. Gravity 48, 162 (2016)

    Article  ADS  Google Scholar 

  12. I. Dymnikova, B. Soltysek, AIP Conference Proceedings 453, 460 (1998)

    Article  ADS  Google Scholar 

  13. I. Dymnikova, Gravitation & Cosmology 8 Suppl. 131 (2002)

  14. I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996)

    Article  ADS  Google Scholar 

  15. I. Dymnikova, Class. Quantum Gravity 19, 725 (2002)

    Article  ADS  Google Scholar 

  16. M. Mars, M.M. Mart’in-Prats, J.M.M. Senovilla, Class. Quantum Gravity 13, L51 (1996)

    Article  Google Scholar 

  17. A. Borde, Phys. Rev. D 55, 7615 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.R. Mbonye, D. Kazanas, Phys. Rev. D 72, 024016 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Ayo’n-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  20. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. Z.-Y. Fan, X. Wang, Phys. Rev. D 94, 124027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. K.A. Bronnikov, J.C. Fabris, Phys. Rev. Lett. D 96, 251101 (2006)

    Article  ADS  Google Scholar 

  23. K.A. Bronnikov, R.K. Walia, Phys. Rev. D 105, 044039 (2022)

    Article  ADS  Google Scholar 

  24. A. Bokulie’, I. Smolic’, T. Juric’, Phys. Rev. D 106, 064020 (2022)

    Article  ADS  Google Scholar 

  25. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  26. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Witten, Nucl. Phys. B 443, 85 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.B. Green, J.H. Schwarz, Phys. Lett. 149 B, 117 (1984)

    Article  ADS  Google Scholar 

  29. M.B. Green, J.H. Schwarz, Phys. Lett. 151 B, 21 (1985)

    Article  ADS  Google Scholar 

  30. C. Cadeau, E. Woolgar, Class. Quant. Gravity 18, 527 (2001)

    Article  ADS  Google Scholar 

  31. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Ashtekar, J. Stachel, Concept. Probl. Quantum Gravity (Birkhauser, Boston-Besel-Berlin, 1991)

    Google Scholar 

  33. C. Rovelli, Quantum Gravity (CUP, Cambridge, 2004)

    Book  MATH  Google Scholar 

  34. C. Rovelli, Scholarpedia 3, 7117 (2008)

    Article  ADS  Google Scholar 

  35. L. Smolin, The present moment in quantum cosmology: challenges to the arguments for the elimination of time (2001). arXiv:0104097 [gr-qc]

  36. R. Emparan, H.S. Reall, Living Rev. Rel. 11, 6 (2008)

    Article  Google Scholar 

  37. H. Yu, L.H. Ford, Phys. Lett. B 496, 107 (2000)

    Article  ADS  Google Scholar 

  38. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. R.C. Myers, M.J. Perry, Ann. Phys. 172, 304 (1986)

    Article  ADS  Google Scholar 

  40. Y. Shen, Z. Tan, Phys. Lett. A 142, 341 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  41. B. Iyer, C.V. Vishveshwara, Pramana J. Phys. 32, 749 (1989)

    Article  ADS  Google Scholar 

  42. A. Chodos, S. Detweiler, Gen. Rel. Gravity 14, 879 (1982)

    Article  ADS  Google Scholar 

  43. G.W. Gibbons, D.L. Wiltshire, Ann. Phys. 167, 201 (1986)

    Article  ADS  Google Scholar 

  44. P.O. Mazur, J. Math. Phys. 28, 406 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. V.P. Frolov, A. Zel’nikov, U. Bleyer, Ann. Phys. (Leipzig) 44, 37 (1987)

    Google Scholar 

  46. D. Xu, Class. Quant. Gravity 5, 871 (1988)

    Article  Google Scholar 

  47. M. Visser, Phys. Lett. B 782, 83 (2018)

    Article  ADS  Google Scholar 

  48. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25 (2018)

    Article  ADS  Google Scholar 

  49. S. Hansraj, A. Banerjee, P. Channuie, Ann. Phys. 400, 320 (2019)

    Article  ADS  Google Scholar 

  50. M.R. Shahzad, G. Abbas, Euro. Phys. J. 135, 502 (2020)

    Google Scholar 

  51. C.E. Mota et al., Int. J. Mod. Phys. D 31, 2250023 (2022)

    Article  ADS  Google Scholar 

  52. D. Das, S. Datta, S. Chakraborty, Euro. Phys. J. C 78, 810 (2018)

    Article  ADS  Google Scholar 

  53. P. Mandal, B.C. Paul, Can. J. Physics (2023)

  54. S. Mukherjee, B.C. Paul, N. Dadhich, S. Maharaj, A. Beesham, Class. Quantum. Gravity 23, 6927 (2006)

    Article  ADS  Google Scholar 

  55. B.C. Paul, S. Ghosh, Gen. Rel. Gravity 42, 795 (2010)

    Article  ADS  Google Scholar 

  56. B.C. Paul, Euro. Phys. J. C 81, 776 (2021)

    Article  ADS  Google Scholar 

  57. Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365 (2017)

    Article  ADS  Google Scholar 

  58. B. Carter, Phys. Rev. 174, 1559 (1968)

    Article  ADS  Google Scholar 

  59. S. Vazquez, E.P. Esteban, Nuovo Cim. B 119, 489 (2004)

    ADS  Google Scholar 

  60. S. Chandrasekhar, Math. Theory Black Holes (Oxford University Press, NY, 1992)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank IUCAA Center for Astronomy Research and Development (ICARD), NBU for extending research facilities and North Bengal University for a research grant. BCP would like to thank IUCAA, Pune for hospitality during a visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Chandra Paul.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.C. Dymnikova black hole in higher dimensions. Eur. Phys. J. Plus 138, 633 (2023). https://doi.org/10.1140/epjp/s13360-023-04280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04280-y

Navigation