Skip to main content
Log in

Localization in multiparticle Anderson models with weak interaction

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that spectral and strong dynamical localization occurs in the one-dimensional multiparticle Anderson model with weak interaction in the continuous configuration space. To obtain these results, the interaction amplitude must be sufficiently small. The general strategy relies on an estimate in the framework of multiscale analysis. In fact, we prove that the multiscale analysis estimates for the single-particle model are unchanged in passing to multiparticle systems if the interparticle interaction is sufficiently small. The only condition imposed on the probability distribution of the external potential, which is a random field of independent identically distributed random quantities, is that it must be logarithmically continuous in the Hölder sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that by Lemma 4.2, two FI cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j)})\) and \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j')})\) for which \(| \mathbf{u} ^{(j)}- \mathbf{u} ^{(j')}|\ge7NL_k\) are automatically separable.

References

  1. M. Aizenmann and S. Warzel, “Localization bounds for multi-particle systems,” Commun. Math. Phys., 290, 903–934 (2009); arXiv:0809.3436v3 [math-ph] (2008).

    Article  ADS  Google Scholar 

  2. M. Aizenmann and S. Warzel, “Complete dynamical localization in disordered quantum multi-particle systems,” in: XVIth Intl. Congress on Mathematical Physics (Prague, Czech Republic, 3–8 August 2009, P. Exner, ed.), World Scientific, Hackensack, N. J. (2010), pp. 556–565.

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Chulaevsky and Y. Suhov, “Multi-particle Anderson localization: Induction on the number of particles,” Math. Phys. Anal. Geom., 12, 117–139 (2009).

    Article  MathSciNet  Google Scholar 

  4. T. Ekanga, “On two-particle Anderson localization at low energies,” C. R. Acad. Sci. Paris Ser. I, 349, 167–170 (2011).

    Article  MathSciNet  Google Scholar 

  5. T. Ekanga, “Multi-particle localization for weakly interacting Anderson tight-binding models,” J. Math. Phys., 58, 043503 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Fauser and S. Warzel, “Multiparticle localization for disordered systems on continuous space via the fractional moment method,” Rev. Math. Phys., 27, 1550010 (2015).

    Article  MathSciNet  Google Scholar 

  7. A. Klein and S. T. Nguyen, “The boostrap multiscale analysis for multi-particle Anderson model,” J. Stat. Phys., 151, 938–973 (2013); arXiv:1212.5638v1 [math-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Boutet de Monvel, V. Chulaevsky, P. Stollmann, and Y. Suhov, “Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential,” J. Stat. Phys., 138, 553–566 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Chulaevsky and Y. Suhov, “Wegner bounds for a two particle tight-binding model,” Commun. Math. Phys., 283, 479–489 (2008); arXiv:0708.2056v1 [math-ph] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston (1990).

    Book  Google Scholar 

  11. J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer, “Constructive proof of localization in the Anderson tight binding model,” Commun. Math. Phys., 101, 21–46 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Germinet and S. De Bièvre, “Dynamical localization for discrete and continuous random Schrödinger operators,” Commun. Math. Phys., 194, 323–341 (1998).

    Article  ADS  Google Scholar 

  13. W. Kirsch, An Invitation to Random Schrödinger Operators (Panorama et Synthèses, Vol. 25), Société Mathématique de France, Marseilles (2008).

    MATH  Google Scholar 

  14. V. Chulaevsky and Y. Suhov, “Eigenfunctions in a two-particle Anderson tight binding model,” Commun. Math. Phys., 289, 701–723 (2009); arXiv:0810.2190v1 [math-ph] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Ekanga, “Localization in the multi-particle tight-binding Anderson model at low energy,” Rev. Math. Phys., 32, 2050009 (2020).

    Article  MathSciNet  Google Scholar 

  16. P. Stollmann, Caught by Disorder: Bounded States in Random Media (Progr. Math. Phys., Vol. 20), Birkhäuser, Boston (2001).

    Book  Google Scholar 

  17. R. Carmona, A. Klein, and F. Martinelli, “Anderson localization for Bernoulli and other singular potentials,” Commun. Math. Phys., 108, 41–66 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Damanik, R. Sims, and G. Stolz, “Localization for one-dimensional continuum Bernoulli–Anderson models,” Duke Math. J., 114, 59–100 (2002).

    Article  MathSciNet  Google Scholar 

  19. V. Chulaevsky, A. Boutet de Monvel, and Y. Suhov, “Dynamical localization for multi-particle models with an alloy-type external random potentials,” Nonlinearity, 24, 1451–1472 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Germinet and A. KLein, “Operator kernel estimates for functions of generalized Schrödinger operators,” Proc. Amer. Math. Soc., 131, 911–920 (2003).

    Article  MathSciNet  Google Scholar 

  21. H. von Dreifus and A. Klein, “A new proof of localization in the Anderson tight-binding model,” Commun. Math. Phys., 124, 285–299 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Damanik and P. Stollmann, “Multi-scale analysis implies strong dynamical localization,” Geom. Funct. Anal., 11, 11–29 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ekanga.

Ethics declarations

The author declares no conflicts of interest.

Appendix: Proofs of the results

Appendix A.1. Proof of Theorem 1.1

To extend Stollmann’s strategy [16] to a multiparticle system, we use multiparticle multiscale analysis estimates in condition DS\((k,N)\).

For \( \mathbf{x} _0\in \mathbb{Z} ^{Nd}\) and an integer \(k\ge0\), using the notation in Lemma 2.1, we set

$$\begin{aligned} \, &R( \mathbf{x} _0):=\max_{1\le\ell\le\kappa(N)}| \mathbf{x} _0- \mathbf{x} _{(\ell)}|,\qquad b_k=b_k( \mathbf{x} _0):=7N+R( \mathbf{x} _0)L_k^{-1}, \\ &M_k( \mathbf{x} _0):=\bigcup_{\ell=1}^{\kappa(N)}C^{(N)}_{7NL_k}( \mathbf{x} ^{(\ell)}) \end{aligned}$$
and define
$$A_{k+1}( \mathbf{x} _0):= \mathbf{C} ^{(N)}_{bb_{k+1}L_{k+1}}( \mathbf{x} _0) \backslash \mathbf{C} ^{(N)}_{b_kL_k}( \mathbf{x} _0),$$
where the positive parameter \(b\) is chosen later. It is easy to verify that
$$M_k( \mathbf{x} _0)\subset \mathbf{C} ^{(N)}_{b_kL_k}( \mathbf{x} _0).$$
Moreover, if \( \mathbf{x} \in A_{k+1}( \mathbf{x} _0)\), then the cubes \( \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} )\) and \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} _0)\) are separable by Lemma 2.1. Now let
$$\Omega_k( \mathbf{x} _0):=\{\exists E\in I_0,\;\exists \mathbf{x} \in A_{k+1}( \mathbf{x} _0)\cap \Gamma_k\colon \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} )\text{ and } \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} _0)\text{ are }(E,m,h)\text{-S cubes}\},$$
where \(\Gamma_k:= \mathbf{x} _0+(L_k/3) \mathbb{Z} ^{Nd}\). Condition DS\((k,N)\) with the cardinality of the set \(A_{k+1}( \mathbf{x} _0)\cap\Gamma_k\) taken into account yields
$$\mathbb{P} \{\Omega_k( \mathbf{x} _0)\}\le(2bb_{k+1}L_{k+1})^{Nd}L_k^{-2p}\le (2bb_{k+1})^{Nd}L_k^{-2p+\alpha Nd}.$$
Because \(p\ge(\alpha Nd+1)/2\) (in fact, \(p\ge6Nd\)), we find that \(\sum_{k=0}^{\infty} \mathbb{P} \{\Omega_k( \mathbf{x} _0)\}\) is finite. Setting
$$\Omega_{\infty}:=\{\forall \mathbf{x} _0\in \mathbb{Z} ^{Nd},\;\text{the event } \Omega_k( \mathbf{x} _0),\;k=1,2,\dots,\text{ occurs finitely many times}\},$$
we obtain \( \mathbb{P} \{\Omega_{\infty}\}=1\) by the Borel–Cantelli lemma and the fact that \( \mathbb{Z} ^{Nd}\) is denumerable. Consequently, it suffices to prove that any eigenfunction \( \boldsymbol{\Psi} \) of \( \mathbf{H} ^{(N)}(\omega)\) for \(\omega\in \Omega_{\infty}\) decays exponentially.

Let \( \boldsymbol{\Psi} \) be a polynomially bounded eigenfunction satisfying the inequality of eigenfunction decay (see Theorem 2.4). Let the norm \(\| \mathbf{1} _{ \mathbf{C} ^{(N)}_1( \mathbf{x} _0)} \boldsymbol{\Psi} \|\ne0\) for \( \mathbf{x} _0\in \mathbb{Z} ^{Nd}\) (if such \( \mathbf{x} _0\) does not exist, then the proof is complete). Then \( \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} _0)\) cannot be an \((E,m,h)\)-NS cube for infinitely many \(k\). Indeed, if \( \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} _0)\) is an \((E,m,h)\)-NS cube for a given \(k\ge0\), then by the inequality of eigenfunction decay and the polynomial estimate for \( \boldsymbol{\Psi} \), we obtain

$$\begin{aligned} \, \| \mathbf{1} _{ \mathbf{C} ^{(N)}_1( \mathbf{x} _0)} \boldsymbol{\Psi} \|&\le\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _0)} \mathbf{G} ^{(N)}_{ \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} _0)}(E) \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{in} )}_{L_k}( \mathbf{x} _0)}\| \cdot\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _0)} \boldsymbol{\Psi} \|\le \\ &\le C(1+| \mathbf{x} _0|+L_k)^t\cdot e^{-mL_k}. \end{aligned}$$
The right-hand side of this inequality tends to zero as \(L_k\to\infty\), which contradicts the choice of \( \mathbf{x} _0\). Therefore, there exists a finite \(k_1=k_1(\omega,E, \mathbf{x} _0)\) such that \( \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} _0)\) is an \((E,m,h)\)-S cube for all \(k\ge k_1\). At the same time, because \(\omega\in \Omega_{\infty}\), there exists \(k_2=k_2(\omega, \mathbf{x} _0)\) such that \(\Omega_k( \mathbf{x} _0)\) is not realized for \(k\ge k_2\). We therefore conclude that for all \(k\ge\max\{k_1,k_2\}\) and all \( \mathbf{x} \in A_{k+1}( \mathbf{x} _0)\cap\Gamma_k\), \( \mathbf{C} ^{(N)}_{L_k}( \mathbf{x} )\) is an \((E,m,h)\)-NS cube.

Let \(\rho\in(0,1)\), We choose

$$b\ge\frac{1+\rho}{1-\rho}, $$
(A.1)
and hence
$$\tilde A_{k+1}( \mathbf{x} _0):= \mathbf{C} ^{(N)}_{\frac{bb_{k+1}L_{k+1}}{1+\rho}}( \mathbf{x} _0)\backslash \mathbf{C} ^{(N)}_{\frac{b_kL_k}{1-\rho}}( \mathbf{x} _0)\subset A_{k+1}( \mathbf{x} _0).$$

Let \( \mathbf{x} \in \tilde A_{k+1}( \mathbf{x} _0)\). Because \(| \mathbf{x} - \mathbf{x} _0|\ge b_kL_k/(1-\rho)\), we have the estimate

$$\operatorname{dist} ( \mathbf{x} , \partial \mathbf{C} ^{(N)}_{b_kL_k}( \mathbf{x} _0))\ge | \mathbf{x} - \mathbf{x} _0|-b_kL_k\ge | \mathbf{x} - \mathbf{x} _0|-(1-\rho)| \mathbf{x} - \mathbf{x} _0|=\rho| \mathbf{x} - \mathbf{x} _0|.$$
Further, \(| \mathbf{x} - \mathbf{x} _0|\le bb_{k+1}L_{k+1}/(1+\rho)\), and therefore
$$\operatorname{dist} ( \mathbf{x} , \partial \mathbf{C} ^{(N)}_{bb_{k+1}L_{k+1}}( \mathbf{x} _0))\ge bb_{k+1}L_{k+1}- | \mathbf{x} - \mathbf{x} _0|\ge (1+\rho)| \mathbf{x} - \mathbf{x} _0|-| \mathbf{x} - \mathbf{x} _0|=\rho| \mathbf{x} - \mathbf{x} _0|.$$
Consequently,
$$\operatorname{dist} ( \mathbf{x} , \partial A_{k+1}( \mathbf{x} _0))\ge \rho| \mathbf{x} - \mathbf{x} _0|.$$
We now set \(k_3=\max\{k_1,k_2\}\), and (A.1) then implies that
$$\bigcup_{k\ge k_3} \tilde A_{k+1}( \mathbf{x} _0)= \mathbb{R} ^{Nd}\backslash \mathbf{C} ^{(N)}_{\frac{b_{k_3}L_{k_3}}{1-\rho}}( \mathbf{x} _0)$$
by virtue of
$$\frac{bb_{k+1}L_{k+1}}{1+\rho}\ge\frac{b_kL_k}{1-\rho}.$$
Let \(k\ge k_3\). We recall that any cube with a center in \(A_{k+1}( \mathbf{x} _0)\cap \Gamma_k\) and side length \(2L_k\) is an \((E,m,h)\)-NS cube. Therefore, for any \( \mathbf{x} \in \tilde A_{k+1}( \mathbf{x} _0)\), we can choose \( \mathbf{x} _1\in A_{k+1}( \mathbf{x} _0)\) such that \( \mathbf{x} \in \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} _1)\). Consequently,
$$\| \mathbf{C} _1^{(N)}( \mathbf{x} ) \boldsymbol{\Psi} \|\le\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{in} )}_{L_k}( \mathbf{x} _1)} \boldsymbol{\Psi} \|\le C\cdot e^{-mL_k}\cdot\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _1)} \boldsymbol{\Psi} \|.$$
Up to a set of Lebesgue measure zero, we can cover a cube \( \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _1)\) by at most \(3^{Nd}\) cubes \( \mathbf{C} ^{(N, \mathrm{in} )}_{L_k} ( \tilde { \mathbf{x} })\) with \( \tilde { \mathbf{x} }\in\Gamma_k\) and \(| \tilde { \mathbf{x} }- \mathbf{x} _1|=L_k/3\). Choosing \( \mathbf{x} _2\) that gives a maximum norm, we obtain
$$\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _1)} \boldsymbol{\Psi} \|\le 3^{Nd}\cdot\| \mathbf{1} _{ \mathbf{C} _{L_k}^{(N, \mathrm{in} )}( \mathbf{x} _2)} \boldsymbol{\Psi} \|,$$
and hence
$$\| \mathbf{1} _{ \mathbf{C} ^{(N)}_1( \mathbf{x} )} \boldsymbol{\Psi} \|\le 3^{Nd}\cdot e^{-mL_k}\cdot\| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{in} )}_{L_k}( \mathbf{x} _2)} \boldsymbol{\Psi} \|.$$

By induction, we can thus find \( \mathbf{x} _1, \mathbf{x} _2,\dots, \mathbf{x} _n\) in \(\Gamma_k\cap A_{k+1}( \mathbf{x} _0)\) with the estimate

$$\| \mathbf{1} _{ \mathbf{C} ^{(N)}_1( \mathbf{x} )} \boldsymbol{\Psi} \|\le(C\cdot3^{Nd}e^{-mL_k})^n\cdot \| \mathbf{1} _{ \mathbf{C} ^{(N, \mathrm{out} )}_{L_k}( \mathbf{x} _n)} \boldsymbol{\Psi} \|.$$
Because \(| \mathbf{x} _i- \mathbf{x} _{i+1}|=L_k/3\) and \( \operatorname{dist} ( \mathbf{x} , \partial A_{k+1})\ge \rho\cdot| \mathbf{x} - \mathbf{x} _0|\), iterating at most \(\rho\cdot| \mathbf{x} - \mathbf{x} _0|\cdot3/{L_k}\) times, we reach the boundary of the set \(A_{k+1}( \mathbf{x} _0)\).

Using the polynomial estimate for \( \boldsymbol{\Psi} \), we obtain

$$\| \mathbf{1} _{ \mathbf{C} ^{(N)}_1( \mathbf{x} )} \boldsymbol{\Psi} \|\le(C\cdot3^{Nd})^{3\rho| \mathbf{x} - \mathbf{x} _0|/L_k} \cdot e^{-3m\rho| \mathbf{x} - \mathbf{x} _0|}\cdot C(1+| \mathbf{x} _0|+bL_{k+1})^t\cdot L_{k+1}^{Nd}.$$
We conclude that for given \(\rho'\in(0,1)\), we can find \(k_4\ge k_3\) such that for \(k\ge k_4\),
$$\| \mathbf{1} _{ \mathbf{C} _1^{(N)}( \mathbf{x} )} \boldsymbol{\Psi} \|\le e^{-\rho\rho'm| \mathbf{x} - \mathbf{x} _0|}$$
if \(| \mathbf{x} - \mathbf{x} _0|\ge b_{k_4}L_{k_4}/(1-\rho)\). This completes the proof of the exponential localization of eigenfunctions in a uniform norm.

Appendix A.2. Proof of Lemma 2.1

We prove the first statement in the lemma. Let \(L>0\), \( \varnothing \ne \mathcal{J} \subset \{1,\dots,n\}\), and \( \mathbf{y} \in \mathbb{Z} ^{nd}\). We call \(\{y_j\}_{j\in \mathcal{J} }\) an \(L\)-cluster if \(\bigcup_{j\in \mathcal{J} } C^{(1)}_L(y_j)\) cannot be decomposed into two nonempty disjoint subsets.

For two given configurations \( \mathbf{x} , \mathbf{y} \in \mathbb{Z} ^{nd}\), we proceed as follows:

  1. 1.

    We decompose the vector \( \mathbf{y} \) into maximum \(L\)-clusters \(\Gamma_1,\dots,\Gamma_M\) (the diameter of each cluster does not exceed \(2nL\)), where \(M\le n\).

  2. 2.

    Each point \(y_i\) corresponds to exactly one cluster \(\Gamma_j\), \(j=j(i)\in\{1,\dots,M\}\).

  3. 3.

    If there exists \(j\in\{1,\dots,M\}\) such that \(\Gamma_j\cap \Pi \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} )= \varnothing \), then the cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{y} )\) and \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} )\) are separable. Otherwise, \(\Gamma_k\cap\Pi \mathbf{C} ^{(n)}_L( \mathbf{x} )\ne \varnothing \) for all \(k=1,\dots,M\). For each \(k=1,\dots,M\), there then exists \(i\in\{1,\dots,n\}\) such that \(\Gamma_k\cap C^{(1)}_L(x_i)\ne \varnothing \). Further, for each \(j=1,\dots,n\), there exists \(k\in\{1,\dots,M\}\) such that \(y_j\in\Gamma_k\). For this \(k\), there then exists \(i\in\{1,\dots,n\}\) such that \(\gamma_k\cap C^{(1)}_L(x_i)\ne \varnothing \). Now let \(z\in\Gamma_k\cap C^{(1)}_L(x_i)\), and hence \(|z-x_i|\le L\). By virtue of \(y_j\in\Gamma_k\), we have

    $$|y_j-x_i|\le |y_j-z|+|z-x_i|\le 2nL-L+L=2nL.$$

We note that we have the estimate \(|y_j-z|\le nL-L\) because \(y_j\) is the center of the \(L\)-cluster \(\Gamma_k\). For each \(j=1,\dots,n\), the coordinate \(y_j\) in the \(n\)-dimensional configuration \((y_1,\dots,y_n)\) must then belong to one of the cubes \(C^{(1)}_{2nL}(x_i)\). We set \(\kappa(n)=n^n\). Whatever the choice from at most \(\kappa(n)\) possibilities for the element \( \mathbf{y} =(y_1,\dots,y_n)\), this element must belong to the Cartesian product of \(n\) cubes of side length \(2L\), i.e., an \(nd\)-dimensional cube of side length \(2nL\), whence follows the first statement in the lemma.

We prove the second statement. We set

$$R( \mathbf{y} )=\max_{1\le i,j\le n}|y_i-y_j|+5NL.$$
We consider a cube \( \mathbf{C} ^{(n)}_L( \mathbf{x} )\) for which \(| \mathbf{y} - \mathbf{x} |\ge R( \mathbf{y} )\). There then exists \(i_0\in\{1,\dots,n\}\) such that \(|y_{i_0}-x_{i_0}|\ge R( \mathbf{y} )\). We consider the maximum connected component \(\Lambda_{ \mathbf{x} }:= \bigcup_{i\in \mathcal{J} }C^{(1)}_L(x_i)\) containing \(x_{i_0}\) in the union \(\bigcup_iC^{(1)}_L(x_i)\). The diameter of \(\Lambda_{ \mathbf{x} }\) does not exceed \(2nL\). We have
$$\operatorname{dist} (\Lambda_{ \mathbf{x} },\Pi \mathbf{C} ^{(n)}_L( \mathbf{y} ))=\min_{u,v}|u-v|.$$
Because
$$|x_{i_0}-y_{i_0}|\le|x_{i_0}-u|+|u-v|+|v-y_{i_0}|,$$
we obtain
$$\operatorname{dist} (\Lambda_{ \mathbf{x} },\Pi \mathbf{C} ^{(n)}_L( \mathbf{y} ))= \min_{u,v}|u-v |- \operatorname{diam} \Lambda_{ \mathbf{x} }-\max_{v,y_{i_0}}|v-y_{i_0}|.$$
We recall that \( \operatorname{diam} \Lambda_{ \mathbf{x} }\le2nL\) and
$$\max_{v,y_{i_0}}|v-y_{i_0}|\le \max_v|v-y_j|+\max_{y_{i_0}}|y_j-y_{i_0}|$$
for some \(j\in\{1,\dots,n\}\) such that \(v\in C^{(1)}_L(y_j)\). Finally, we obtain the inequality
$$\operatorname{dist} (\Lambda_{ \mathbf{x} },\Pi \mathbf{C} ^{(n)}_L( \mathbf{y} ))\ge R( \mathbf{y} )- \operatorname{diam} \Lambda_{ \mathbf{x} }-(2L+ \operatorname{diam} (\Pi \mathbf{y} )),$$
and the right-hand side is strictly positive. It hence follows that \( \mathbf{C} ^{(n)}_L( \mathbf{x} )\) is \( \mathcal{J} \) separable from \( \mathbf{C} ^{(n)}_L( \mathbf{y} )\).

Appendix A.3. Proof of Lemma 4.1

We introduce the notation \(R:=2L+r_0\) and assume that

$$\operatorname{diam} \Pi \mathbf{u} =\max_{i,j}|u_i-u_j|\ge nR.$$
If the union of cubes \(C^{(1)}_{R/2}(u_i)\), \(i=1,\dots,n\), is not decomposable into two (or more) disjoint groups, then it is a connected set, its diameter is hence bounded by \(n(2(R/2))=nR\), and then \( \operatorname{diam} \Pi \mathbf{u} \le nR\), which contradicts the assumption made. Therefore, there exists an index subset \( \mathcal{J} \subset\{1,\dots,n\}\) such that \(|u_{j_1}-u_{j_2}|\ge2(R/2)\) for all \(j_1\in \mathcal{J} \) and \(j_2\in \mathcal{J} ^{ \mathrm{c} }\). We hence have
$$\begin{aligned} \, \operatorname{dist} (\Pi_{ \mathcal{J} } \mathbf{C} ^{(n)}_L( \mathbf{u} ),\Pi_{ \mathcal{J} ^{ \mathrm{c} }} \mathbf{C} ^{(n)}_L( \mathbf{u} ))&= \min_{\substack{j_1\in \mathcal{J} ,\\j_2\in \mathcal{J} ^{ \mathrm{c} }}} \operatorname{dist} (C^{(1)}_L(u_{j_1}),C^{(1)}_L(u_{j_2}))\ge \\ &\ge\min_{\substack{j_1\in \mathcal{J} ,\\j_2\in \mathcal{J} ^{ \mathrm{c} }}}|u_{j_1}-u_{j_2}|-2L\ge r_0. \end{aligned}$$

Appendix A.4. Proof of Lemma 4.2

If

$$R\le| \mathbf{x} - \mathbf{y} |=\max_{1\le j\le n}|x_j-y_j|$$
for some \(R>0\), then there exists \(j_0\in\{1,\dots,n\}\) such that \(|x_{j_0}-y_{j_0}|\ge R\). By hypothesis, \( \mathbf{C} ^{(n)}_L( \mathbf{x} )\) and \( \mathbf{C} ^{(n)}_L( \mathbf{y} )\) are FI cubes, and therefore
$$\begin{aligned} \, |x_{j_0}-x_i|\le \operatorname{diam} \Pi_{ \mathbf{x} }\le n(2L+r_0),\qquad \Pi_{ \mathbf{x} }=\{x_1,\dots,x_n\}, \\ |y_{j_0}-y_j|\le \operatorname{diam} \Pi_{ \mathbf{y} }\le n(2L+r_0),\qquad \Pi_{ \mathbf{y} }=\{y_1,\dots,y_n\}. \end{aligned}$$
By the triangle inequality, for any \(i,j\in\{1,\dots,n\}\) and \(R\ge7nL\ge 6nL+2nr_0\), we have
$$|x_i-y_j|\ge |x_{j_0}-y_{j_0}|-|x_{j_0}-x_i|-|y_{j_0}-y_j|\ge 6nL+2nr_0-2n(2L+r_0)=2nL.$$
Therefore,
$$\min_{i,j} \operatorname{dist} (C^{(1)}_L(x_i),C^{(1)}_L(y_j))\ge \min_{i,j}|x_i-y_j|-2L\ge2(n-1)L,$$
which proves the statement in the lemma.

Appendix A.5. Proof of Lemma 4.5

We assume that \(M^{ \mathrm{sep} }( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} ),E)\) does not exceed 2 (i.e., there do not exist two separable cubes of radius \(L_k\) in \( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )\)) but \(M( \mathbf{C} ^{(n)}( \mathbf{u} ),E)\ge\kappa(n)+2\). Then \( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )\) must contain at least \(\kappa(n){+}2\) cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{v} _i)\), \(0\le i\le\kappa(n)+1\) that are separable, but in this case, \(| \mathbf{v} _i- \mathbf{v} _{i'}|\ge7NL_k\) for all \(i\ne i'\).

On the other hand, by Lemma 2.1, there exist at most \(\kappa(n)\) cubes \( \mathbf{C} ^{(n)}_{2nL_k}( \mathbf{y} _i)\) such that each cube \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{x} )\) with a center \( \mathbf{x} \notin\bigcup_j \mathbf{C} ^{(n)}_{2nL_k}( \mathbf{y} _j)\) is separable from \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{v} _0)\). Hence, \( \mathbf{v} _i\in\bigcup_j \mathbf{C} ^{(n)}_{2nL_k}( \mathbf{y} _j)\) for all \(i=1,\dots,\kappa(n)+1\). But \(| \mathbf{v} _i- \mathbf{v} _{i'}|\ge7NL_k\) for \(i\ne i'\), and each cube \( \mathbf{C} ^{(n)}_{2nL_k}(y_j)\), \(j=1,\dots,\kappa(n)\), must contain at least one center \( \mathbf{v} _i\). This leads to the contradiction \(\kappa(n)+1\le\kappa(n)\).

The reasoning holds if we consider only PI cubes.

Appendix A.6. Proof of Lemma 4.6

Let \(M_{ \mathrm{PI} }( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} ),I)\ge\kappa(n)+2\). Then \(M^{ \mathrm{sep} }_{ \mathrm{PI} }( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} ),I)\ge2\) by Lemma 4.5, i.e., there are at least two separable \((E,m,h)\)-S PI cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_1)}\) and \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_2)})\) in \( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )\). The number of possible pairs of centers \(\{ \mathbf{u} ^{(j_1)}, \mathbf{u} ^{(j_2)}\}\) such that

$$\mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_1)})\subset \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} ),\qquad \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_2)})\subset \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )$$
is bounded above by \((3^{2nd}/2)L_{k+1}^{2nd}\). Setting
$$\mathrm{B} _k=\{\exists E\in I\colon \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_1)})\text{ and } \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j_2)})\text{ are }(E,m,h)\text{-S cubes}\},$$
we then obtain
$$\mathbb{P} \{M^{ \mathrm{sep} }_{ \mathrm{PI} }( \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} ),I)\ge2\}\le \frac{3^{2nd}}{2}L_{k+1}^{2nd}\cdot \mathbb{P} \{B_k\},$$
where \( \mathbb{P} \{ \mathrm{B} _k\}\le L_k^{-4^Np}+L_k^{-4p4^{N-n}}\).

Appendix A.7. Proof of Lemma 4.8

We assume that there exist \(2\ell\) pairwise separable FI cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j)})\subset \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )\), \(j=1,\dots,2\ell\). Then by Lemma 4.2, for any pair \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(2i-1)})\) and \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(2i)})\), the corresponding random Hamiltonians \( \mathbf{H} ^{(n)}_{ \mathbf{C} ^{(n)}_{L_k} ( \mathbf{u} ^{(2i-1)})}\) and \( \mathbf{H} ^{(n)}_{ \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(2i)})}\) are independent, as also are their spectra and their Green’s functions. We consider the events

$$\mathrm{A} _i=\{\exists E\in I\colon \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(2i-1)})\text{ and } \mathbf{C} ^{(n)}_{L_k}\text{ are }(E,m,h)\text{-S cubes}\}.$$
By condition DS\((k,n)\), we have
$$\mathbb{P} \{ \mathrm{A} _i\}\le L_k^{-2p4^{N-n}}$$
for \(i=1,\dots,\ell\), and because the events \(A_1,\dots,A_{\ell}\) are independent,
$$\mathbb{P} \biggl\{\bigcap_{1\le i\le\ell}A_i\biggr\}= \prod_{i=1}^{\ell} \mathbb{P} \{ \mathrm{A} _i\}\le(L_k^{-2p4^{N-n}})^{\ell}.$$
To complete the proof, we note that the total number of different families of \(2\ell\) cubes \( \mathbf{C} ^{(n)}_{L_k}( \mathbf{u} ^{(j)})\subset \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )\), \(j=1,\dots,2\ell\), is bounded by
$$\frac{1}{(2\ell)!}| \mathbf{C} ^{(n)}_{L_{k+1}}( \mathbf{u} )|^{2\ell}\le C(n,N,d,\ell)L_k^{2\ell dn\alpha}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekanga, T. Localization in multiparticle Anderson models with weak interaction. Theor Math Phys 206, 357–382 (2021). https://doi.org/10.1134/S0040577921030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921030089

Keywords

Navigation