Skip to main content
Log in

Two Problems in the Theory Of Differential Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Differential equations considered in terms of exterior differential forms, as did É. Cartan, distinguish a differential ideal in the supercommutative superalgebra of differential forms, i.e., an affine supervariety. Therefore, each differential equation has a supersymmetry (perhaps trivial). Which superymmetries of systems of classical differential equations are not yet found? We also consider the question of why criteria of the formal integrability of differential equations are currently never used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  2. D. Leites, “New Lie superalgebras, and mechanics,” Soviet Math. Dokl., 18, 1277–1280 (1977).

    MATH  Google Scholar 

  3. V. G. Kac, “Lie superalgebras,” Adv. Math., 26, 8–96 (1977).

    Article  MATH  Google Scholar 

  4. P. Grozman, “Classification of bilinear invariant operators on tensor fields,” Funct. Anal. Appl., 14, 127–128 (1980); arXiv:math/0509562v1 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Leites and I. Shchepochkina, “Classification of simple Lie superalgebras of vector fields,” Preprint MPIMBonn 2003–28, http://www.mpim–bonn.mpg.de/preprints/, Max Planck Inst. Math., Bonn (2003).

    MATH  Google Scholar 

  6. V. Kac, “Classification of infinite–dimensional simple linearly compact Lie superalgebras,” Adv. Math., 139, 1–55 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Shchepochkina, “Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings,” Represent. Theory, 3, 373–415 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Cantarini and V. G. Kac, “Infinite–dimensional primitive linearly compact Lie superalgebras,” Adv. Math., 207, 328–419 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Cantarini and V. G. Kac, “Classification of linearly compact simple rigid superalgebras,” IMRN, 2010, 3341–3393 (2010); arXiv:0909.3100v1 [math.QA] (2009).

    MathSciNet  MATH  Google Scholar 

  10. S.–J. Cheng and V. Kac, “Generalized Spencer cohomology and filtered deformations of Z–graded Lie superalgebras,” Adv. Theor. Math. Phys., 2, 1141–1182 (1998); Addendum, 8, 697–709 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. J. Cheng and V. G. Kac, “Structure of some Z–graded Lie superalgebras of vector fields,” Transform. Groups, 4, 219–272 (1999); Erratum, 9, 399–400 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Leites and I. Shchepochkina, “How should the antibracket be quantized?” Theor. Math. Phys., 126, 281–306 (2001); arXiv:math–ph/0510048v1 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. Sh.–J. Cheng and V. G. Kac, “Generalized Spencer cohomology and filtered deformations of Z–graded Lie superalgebras,” Adv. Theor. Math. Phys., 2, 1141–1182 (1998); arXiv:math.RT/9805039v3 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Kostant, Graded Manifolds, Graded Lie Groups, and Prequantisation (Lect. Notes Math., Vol. 570), Springer, Berlin (1975).

    Google Scholar 

  15. I. A. Batalin and G. A. Vilkovisky, “Gauge algebra and quantization,” Phys. Lett. B, 102, 27–31 (1981); “Quantization of gauge theories with linearly dependent generators,” Phys. Rev. D, 28, 2567–2582 (1983); Erratum, 30, 508 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. Dotsenko, S. Shadrin, and B. Vallette, “Givental group action on topological field theories and homotopy Batalin–Vilkovisky algebras,” Adv. Math., 236, 224–256 (2013); arXiv:1112.1432v5 [math.QA] (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Grozman, “SuperLie: A Mathematica package for calculations in Lie algebras and superalgebras,” http://www.equaonline.com/math/SuperLie (2013).

    Google Scholar 

  18. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior Differential Systems (Math. Sci. Res. Inst. Publ., Vol. 18), Springer, New York (1991).

    Book  MATH  Google Scholar 

  19. P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, and E. Witten, eds., Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, Amer. Math. Soc., Providence, R. I. (1999).

    MATH  Google Scholar 

  20. J. Bernstein, D. Leites, V. Molotkov, and V. Shander, Seminar on Supermanifolds [in Russian], Vol. 1, Algebra and Calculus: Main Chapters, MCCME, Moscow (2011).

    Google Scholar 

  21. F. Berezin, Introduction to Superanalysis [in Russian] (D. Leites, ed. With appendices by D. Leites, V. Shander, and I. Shchepochkina), MCCME, Moscow (2013).

  22. D. Leites, “The Riemann tensor for nonholonomic manifolds,” Homology Homotopy Appl., 4, 397–407 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Shchepochkina, “How to realize Lie algebras by vector fields,” Theor. Math. Phys., 147, 821–838 (2006); arXiv:math.RT/0509472v1 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. N. Shander, “Complete integrability of ordinary differential equations on supermanifolds,” Funct. Anal. Appl., 17, 74–75 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Molotkov, “Infinite–dimensional and colored supermanifolds,” J. Nonlinear Math. Phys., 17, suppl. 1, 375–446 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Giulini, “The superspace of geometrodynamics,” Gen. Rel. Grav., 41, 785–815 (2009); arXiv:0902.3923v1 [gr–qc] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D. A. Leites, “Spectra of graded–commutative rings,” Russian Math. Surveys, 29, 209–210 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  28. W. I. Fushchich and A. G. Nikitin, Symmetries of Maxwell’s Equations (Math. Its Appl., Vol. 8), Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  29. J. Niederle and A. G. Nikitin, “Extended supersymmetries for the Schrödinger–Pauli equation,” J. Math. Phys., 40, 1280–1293 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Duplij, J. Bagger, and W. Siegel, eds., Concise Encyclopedia of Supersymmetry: And Noncommutative Structures in Mathematics and Physics, Kluwer, Dordrecht (2003).

    MATH  Google Scholar 

  31. S. Bouarroudj, P. Grozman, S. Leites, and I. Shchepochkina, “Minkowski superspaces and superstrings as almost real–complex supermanifolds,” Theor. Math. Phys., 173, 1687–1708 (2012); arXiv:1010.4480v2 [math.DG] (2010).

    Article  MathSciNet  MATH  Google Scholar 

  32. É. Cartan, OEuvres complètes. Partie II: Algèbre, systèmes différentiels et problèmes d’équivalence, CNRS, Paris (1984).

    Google Scholar 

  33. J. A. Wheeler, Einstein’s Vision, Springer, Berlin (1968).

    Book  Google Scholar 

  34. Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984); English transl.: Gauge Field Theory and Complex Geometry (Grundlehren Math. Wiss., Vol. 289), Springer, Berlin (1997).

    Google Scholar 

  35. A. V. Zorich, “Integration of pseudodifferential forms and inversion of Radon–type integral transformations,” Russian Math. Surveys, 42, 151–152 (1987).

    Article  ADS  MATH  Google Scholar 

  36. D. Quillen, “Superconnections and the Chern character, topology,” Internat. J. Math., 24, 89–95 (1985).

    MathSciNet  MATH  Google Scholar 

  37. N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators (Grundlehren Math. Wiss., Vol. 298), Springer, Berlin (1992).

    Book  MATH  Google Scholar 

  38. D. Leites, “The index theorem for homogeneous differential operators on supermanifolds,” in: Supersymmetries and Quantum Symmetries SQS’ 99 (E. Ivanov, S. Krivonos, and A. Pashnev, eds.), Joint Inst. Nucl. Res., Dubna (2000), pp. 405–408; arXiv:math–ph/0202024v1 (2002).

  39. D. Leites and I. Shchepochkina, “The Howe duality and Lie superalgebras,” in: Noncommutative Structures in Mathematics and Physics (NATO Sci. Ser. II Math. Phys. Chem., Vol. 22, S. Duplij and J. Wess, eds.), Springer, Dordrecht (2001), pp. 93–111; arXiv:math.RT/0202181v1 (2002).

  40. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, Princeton, N. J. (1992).

    MATH  Google Scholar 

  41. E. Witten, “An interpretation of classical Yang–Mills theory,” Phys. Lett. B, 77, 394–398 (1978).

    Article  ADS  Google Scholar 

  42. E. Witten, “Dynamical breaking of supersymmetry,” Nucl. Phys. B, 188, 513–554 (1981).

    Article  ADS  MATH  Google Scholar 

  43. G. K. Gendenshtein and I. V. Krive, “Supersymmetry in quantum mechanics,” Sov. Phys. Usp., 28, 645–666 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  44. J. Brundan, “Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra q(n),” Adv. Math., 182, 28–77 (2004); arXiv:math/0207024v2 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  45. S.–J. Cheng and J.–H. Kwon, “Finite–dimensional half–integer weight modules over queer Lie superalgebras,” Commun. Math. Phys., 346, 945–965 (2016); arXiv:1505.06602v1 [math.RT] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. A. Kirillov, “Orbits of the group of diffeomorphisms of the circle and local Lie superalgebras,” Funct. Anal. Appl., 15, 135–137 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Grozman, D. Leites, and I. Shchepochkina, “Lie superalgebras of string theories,” Acta Math. Vietnam., 26, 27–63 (2001); arXiv:hep–th/9702120v1 (1997).

    MathSciNet  MATH  Google Scholar 

  48. V. Yu. Ovsienko, O. Ovsienko, and Yu. Chekanov, “Classification of contact–projective structures on supercircles,” Russian Math. Surveys, 44, 212–213 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. D. Leites, “Supersymmetry of the Sturm–Liouville and Korteveg–de Vries operators,” in: Operator Methods in Ordinary and Partial Differential Equations (Oper. Theor. Adv. Appl., Vol. 132, S. Albeverio, N. Elander, W. N. Everitt, and P. Kurasov, eds.), Birkhäuser, Basel (2002), pp. 267–285.

    Google Scholar 

  50. S. Mohammadzadeh and D. B. Fuchs, “Cohomology of the Lie algebra H2: Experimental results and conjectures,” Funct. Anal. Appl., 48, 128–137 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. Kornyak, “Computation of cohomology of Lie superalgebras of vector fields,” Internat. J. Modern Phys. C, 11, 397–413 (2000); arXiv:math/0002210v1 (2000).

    ADS  MathSciNet  Google Scholar 

  52. P. Grozman and D. Leites, “From supergravity to ballbearings,” in: Supersymmetries and Quantum Symmetries SQS’ 97 (Lect. Notes Phys., Vol. 524, J. Wess and E. Ivanov, eds.), Springer, Berlin (1999), pp. 58–67.

    Google Scholar 

  53. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  54. I. Zelenko, “On Tanaka’s prolongation procedure for filtered structures of constant type,” SIGMA, 5, 094 (2009).

    MathSciNet  MATH  Google Scholar 

  55. D. Alekseevsky and L. David, “Prolongation of Tanaka structures: An alternative approach,” Ann. Mat., 196, 1137–1164 (2017); arXiv:1603.00700v2 [math.DG] (2016).

    Article  MathSciNet  MATH  Google Scholar 

  56. D. The, “Exceptionally simple PDE,” Differ. Geom. Appl., 56, 13–41 (2018); arXiv:1603.08251v2 [math.DG] (2016).

    Article  MathSciNet  MATH  Google Scholar 

  57. V. M. Sergeev, The Limits of Rationality: A Thermodynamical Approach to Market Economy [in Russian], Fasis, Moscow (1999).

    Google Scholar 

  58. V. P. Pavlov, Dirac’s Nonholonomic Mechanics and Differential Geometry (Lecture Courses, Vol. 22), MIAN, Moscow (2014).

    Google Scholar 

  59. V. P. Pavlov and V. M. Sergeev, “Thermodynamics from the differential geometry standpoint,” Theor. Math. Phys., 157, 1484–1490 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  60. V. Sergeev, “The thermodynamic approach to markets,” arXiv:0803.3432v1 [physics.soc–ph] (2008).

    Google Scholar 

  61. E. Poletaeva, “The analogs of Riemann and Penrose tensors on supermanifolds,” arXiv:math/0510165v1 [math.RT] (2005).

    Google Scholar 

  62. D. B. Fuks, Cohomology of Infinite–Dimensional Lie Algebras, Consultants Bureau, New York (1986).

    Book  MATH  Google Scholar 

  63. B. Feigin and D. Fuchs, “Cohomologies of Lie groups and Lie algebras [in Russian],” in: Sovrem. Probl. Mat. Fund. Naprav., Vol. 21, VINITI, Moscow (1988), pp. 121–209; English transl. in: Lie Groups and Lie Algebras: II. Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras (Encycl. Math. Sci., Vol. 21), Springer, Berlin (2000), pp. 125–223.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Leites.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 2, pp. 309–325, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leites, D.A. Two Problems in the Theory Of Differential Equations. Theor Math Phys 198, 271–283 (2019). https://doi.org/10.1134/S0040577919020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919020089

Keywords

Navigation