Skip to main content
Log in

Non-standard analysis for fractal calculus

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we summarize fractal calculus on fractal curves and nonstandard analysis. Using nonstandard analysis which includes hyperreal and hyperinteger numbers, we define left and right limits and derivatives on fractal curves. Fractal integral and differential forms are defined using nonstandard analysis. Some examples are solved to show details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Falconer, K. 2004. Fractal geometry: mathematical foundations and applications. John Wiley & Sons.

    MATH  Google Scholar 

  2. Jorgensen, P.E.T. 2018. Harmonic Analysis: Smooth and Non-smooth. American Mathematical Society.

    Book  MATH  Google Scholar 

  3. Barlow, M.T., and E.A. Perkins. 1988. Brownian motion on the sierpinski gasket. Probab. Theory Rel. 79 (4): 543–623.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kigami, J. 2001. Analysis on Fractals. Cambridge University Press.

    Book  MATH  Google Scholar 

  5. Lapidus, M.L., G. Radunović, and D. Žubrinić. 2017. Fractal Zeta Functions and Fractal Drums. Springer International Publishing.

    Book  MATH  Google Scholar 

  6. Stillinger, F.H. 1977. Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 18 (6): 1224–1234.

    Article  MathSciNet  MATH  Google Scholar 

  7. Strichartz, R.S. 2018. Differential Equations on Fractals. Princeton University Press.

    Book  Google Scholar 

  8. Samayoa, D., L. Ochoa-Ontiveros, L. Damián-Adame, E. Reyes de Luna, L. Álvarez-Romero, and G. Romero-Paredes. 2020. Fractal model equation for spontaneous imbibition. Revista mexicana de física 66 (3): 283–290.

    Article  MathSciNet  Google Scholar 

  9. Freiberg, U., and M. Zähle. 2002. Harmonic calculus on fractals-a measure geometric approach i. Potential Analysis 16 (3): 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  10. Samayoa Ochoa, D., L. Damián Adame, and A. Kryvko. 2022. Map of a bending problem for self-similar beams into the fractal continuum using the euler-bernoulli principle. Fractal and Fractional 6 (5): 230.

    Article  Google Scholar 

  11. Z.n. Hu, B. Li, Y. Xiao. 2022. On the intersection of dynamical covering sets with fractals. Mathematische Zeitschrift. 301 (1): 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  12. Parvate, A., and A.D. Gangal. 2009. Calculus on fractal subsets of real line-i: Formulation. Fractals 17 (01): 53–81.

    Article  MathSciNet  MATH  Google Scholar 

  13. Golmankhaneh, A.K. 2022. Fractal Calculus and its Applications. World Scientific.

    Book  MATH  Google Scholar 

  14. Parvate, A., and A. Gangal. 2011. Calculus on fractal subsets of real line-ii: Conjugacy with ordinary calculus. Fractals 19 (03): 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  15. Parvate, A., S. Satin, and A. Gangal. 2011. Calculus on fractal curves in \({\mathbb{R} }^{n}\). Fractals 19 (01): 15–27.

    Article  MathSciNet  MATH  Google Scholar 

  16. Golmankhaneh, A.K., and D. Baleanu. 2016. Non-local integrals and derivatives on fractal sets with applications. Open Physics 14 (1): 542–548.

    Article  Google Scholar 

  17. Banchuin, R. 2022. Nonlocal fractal calculus based analyses of electrical circuits on fractal set. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 41 (1): 528–549.

    Article  Google Scholar 

  18. Banchuin, R. 2022. Noise analysis of electrical circuits on fractal set COMPEL-The international journal for computation and mathematics in electrical and electronic engineering. Bradford, UK: Emerald Publishing Limited.

    Google Scholar 

  19. Golmankhaneh, A.K., and A. Fernandez. 2018. Fractal calculus of functions on cantor tartan spaces. Fractal Fract. 2 (4): 30.

    Article  Google Scholar 

  20. Golmankhaneh, A.K., and S.M. Nia. 2021. Laplace equations on the fractal cubes and casimir effect. European Physical Journal Special Topics 230 (21): 3895–3900.

    Article  Google Scholar 

  21. Golmankhaneh, A.K., A. Fernandez, A.K. Golmankhaneh, and D. Baleanu. 2018. Diffusion on middle- cantor sets. Entropy 20 (7): 504.

    Article  MathSciNet  Google Scholar 

  22. Golmankhaneh, A.K., and A.S. Balankin. 2018. Sub-and super-diffusion on cantor sets: Beyond the paradox. Physics Letters A. 382 (14): 960–967.

    Article  MATH  Google Scholar 

  23. Golmankhaneh, A.K., and C. Tunç. 2019. Sumudu transform in fractal calculus. Applied Mathematics and Computation. 350: 386–401.

    Article  MathSciNet  MATH  Google Scholar 

  24. Golmankhaneh, A.K., K. Ali, R. Yilmazer, and M. Kaabar. 2021. Local fractal fourier transform and applications. Computational Methods for Differential Equations. 10 (3): 595–607.

    MathSciNet  MATH  Google Scholar 

  25. Golmankhaneh, A.K., and C. Tunç. 2020. Stochastic differential equations on fractal sets. Stochastics 92 (8): 1244–1260.

    Article  MathSciNet  MATH  Google Scholar 

  26. Golmankhaneh, A.K., and C. Cattani. 2019. Fractal logistic equation. Fractal Fractional. 3 (3): 41.

    Article  Google Scholar 

  27. Gowrisankar, A., A.K. Golmankhaneh, and C. Serpa. 2021. Fractal calculus on fractal interpolation functions. Fractal Fractional. 5 (4): 157.

    Article  Google Scholar 

  28. Golmankhaneh, A.K., and K. Welch. 2021. Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review. Modern Physics Letters A. 36 (14): 2140,002.

    Article  MathSciNet  MATH  Google Scholar 

  29. Golmankhaneh, A.K., and K. Kamal Ali. 2021. Fractal kronig-penney model involving fractal comb potential. Journal of Mathematical Modeling. 9 (3): 331–345.

    MathSciNet  MATH  Google Scholar 

  30. Keisler, H.J. 2013. Elementary calculus: An Infinitesimal Approach. Courier Corporation.

    MATH  Google Scholar 

  31. Benci, V., M. Cococcioni, and L. Fiaschi. 2022. Non-standard analysis revisited: An easy axiomatic presentation oriented towards numerical applications. International Journal of Applied Mathematics and Computer Science. 32 (1): 65.

    MathSciNet  MATH  Google Scholar 

  32. Nak-seung, P.H., and E.I. Verriest. 2017. Causal modeling in impulsive systems: A new rigorous non-standard analysis approach. Nonlinear Analysis: Hybrid Systems 25: 138–154.

    MathSciNet  MATH  Google Scholar 

  33. Nowak, K. 2015. in Annales Polonici Mathematici. arXiv Reprint arXiv. 3: 235–267.

    Google Scholar 

  34. Spalt, D.D. 2001. Curt schmieden’s non-standard analysis-a method of dissolving the standard paradoxes of analysis. Centaurus 43 (3–4): 137–175.

    MathSciNet  MATH  Google Scholar 

  35. Tanaka, K. 1997. Non-standard analysis in wkl0. Mathematical Logic Quarterly 43 (3): 396–400.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wenmackers, S. 2013. Ultralarge lotteries: Analyzing the lottery paradox using non-standard analysis. Journal of Applied Logic 11 (4): 452–467.

    Article  MathSciNet  MATH  Google Scholar 

  37. Lobry, C., and T. Sari. 2008. Non-standard analysis and representation of reality. International Journal of Control 81 (3): 519–536.

    Article  MathSciNet  MATH  Google Scholar 

  38. Nottale, L., and J. Schneider. 1984. Fractals and nonstandard analysis. Journal of Mathematical Physics 25 (5): 1296–1300.

    Article  MathSciNet  Google Scholar 

  39. Potgieter, P. 2009. Nonstandard analysis, fractal properties and brownian motion. Fractals 17 (01): 117–129.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Cristina Serpa acknowledges partial funding by national funds through FCT-Foundation for Science and Technology, project reference: UIDB/04561/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khalili Golmankhaneh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili Golmankhaneh, A., Welch, K., Serpa, C. et al. Non-standard analysis for fractal calculus. J Anal 31, 1895–1916 (2023). https://doi.org/10.1007/s41478-022-00543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-022-00543-6

Keywords

Mathematics Subject Classification

Navigation