Skip to main content
Log in

On Einstein equations with cosmological constant in braneworld models

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Einstein equations with cosmological constant for Randall–Sundrum (RS) and Dvali–Gabadadze–Porrati (DGP) models to determine the warp functions in the context of warp product spacetimes. In RS model, it is shown that Einstein’s equation in the bulk is reduced into the brane as a vacuum equation, having vacuum solution, which is not affected by the cosmological constant in the bulk. In DGP model, it is shown that the Einstein’s equation in the bulk is reduced into the brane and along the extra dimension, where both equations are affected by the cosmological constant in the bulk. We have solved these equations in DGP model, subject to vanishing cosmological constants on the brane and along extra dimension, and obtained exact solutions for the warp functions. The solutions depend on the typical values of cosmological constant in the bulk as well as the dimension of the brane. So, corresponding to the typical values, some solutions have exponential behaviors which may be set to represent warp inflation on the brane, and some other solutions have oscillating behaviors which may be set to represent warp waves or branes waves along the extra dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This line element is the special case of DGP braneworld cosmological model in which the laps function is set to \(n(\tau ,y)=1\).

References

  1. S Capozziello and M Francaviglia Gen. Relativ. Gravit. 40 357 (2008)

    Article  ADS  Google Scholar 

  2. L Randall and R Sundrum Phys. Rev. Lett. 83 3370 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. l Randall and R Sundrum Phys. Rev. Lett. 83 4690 (1999)

  4. G Dvali, G Gabadadze and M Porrati Phys. Lett. B. 485 208 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. B McInnes Nucl. Phys. B. 602 132 (2001)

    Article  ADS  Google Scholar 

  6. S S Gubser Phys. Rev. D. 63 084017 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. H Verlinde Nucl. Phys. B. 580 264 (2000)

    Article  ADS  Google Scholar 

  8. C S Chan, P L Paul and H Verlinde Nucl. Phys. B. 581 156 (2000)

    Article  ADS  Google Scholar 

  9. S W Hawking, T Hertog and H S Reall Phys. Rev. D. 62 043501 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. M J Duff and J T Liu Phys. Rev. Lett. 85 2052 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. M J Duff, J T Liu and K S Stelle J. Math. Phys. 42 3027 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. C Deffayet Phys. Lett. B. 502 199 (2001)

    Article  ADS  Google Scholar 

  13. C Deffayet, G Dvali and G Gabadadze Phys. Rev. D. 65 044023 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. G Dvali and G Gabadadze Phys. Rev. D. 63 065007 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. G Dvali, G Gabadadze and M Porrati Phys. Lett. B. 484 112 (2000)

    Article  ADS  Google Scholar 

  16. A Lue Phys. Rep. 423 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. A Lue, R Scoccimarro and G D Starkman Phys. Rev. D. 69 124015 (2004)

    Article  ADS  Google Scholar 

  18. A Lue and G Starkman Phys. Rev. D. 67 064002 (2003)

    Article  ADS  Google Scholar 

  19. F Gholami, F Darabi and A Haji-Badali Int. J. Geom. Meth. Mod. Phys. 14 1750021 (2017)

    Article  Google Scholar 

  20. M Faghfouri A Haji-Badali and F Gholami J. Math. Phys. 58 053508 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. B O’Neill Semi-Riemannian geometry with applications to relativity, (Academic Press Inc. 1983).

  22. F Dobarro and B Unal J. Geom. Phys. 55 75 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. S Weinberg Rev. Mod. Phys. 61 1 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gholami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, F., Darabi, F. & Haji Badali, A. On Einstein equations with cosmological constant in braneworld models. Indian J Phys 96, 963–969 (2022). https://doi.org/10.1007/s12648-020-01995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01995-x

Keywords

Navigation