Skip to main content
Log in

On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Given a branching random walk on \({\mathbb {R}}\) started from the origin, where the tail of the branching law decays at least exponentially fast and the offspring number is at least one, let \(Z_n(\cdot )\) be the counting measure which counts the number of individuals at the n-th generation located in a given set. Under some mild conditions, it is known (Biggins in Stoch. Process. Appl. 34:255–274, 1990) that for any interval \(A\subset {\mathbb {R}}\), \(\frac{Z_n(\sqrt{n}A)}{Z_n({\mathbb {R}})}\) converges a.s. to \(\nu (A)\), where \(\nu \) is the standard Gaussian measure. In this work, we investigate the convergence rates of

$$\begin{aligned} {\mathbb {P}}\left( \frac{Z_n(\sqrt{n}A)}{Z_n({\mathbb {R}})}-\nu (A)>\Delta \right) , \end{aligned}$$

for \(\Delta \in (0, 1-\nu (A))\). We consider both the Schröder case, where the offspring number could be one, and the Böttcher case, where the offspring number is at least two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Asmussen, S., Kaplan, N.: Branching random walk I. Stoch. Process. Appl. 4, 1–13 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  3. Biggins, J.D.: The central limit theorem for the supercritical branching random walk, and related results. Stoch. Process. Appl. 34, 255–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X.: Exact convergence rates for the distribution of the particles in branching random walks. Ann. Appl. Probab. 11, 1242–1262 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Durrett, R.: Probability Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  7. Fleischmann, K., Wachtel, V.: Large deviations for sums indexed by the generations of a Galton–Watson process. Probab. Theory Relat. Fields 141, 445–470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, Z.: Exact convergence rate of the local limit theorem for branching random walks on the integer lattice. Stoch. Process. Appl. 127, 1282–1296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, Z., Liu, Q.: Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stoch. Process. Appl. 126, 2634–2664 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Z., Liu, Q.: Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time. Bernoulli 24(1), 772–800 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  12. Klebaner, C.F.: Branching random walk in varying environments. Adv. Appl. Probab. 14, 359–367 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Louidor, O., Perkins, W.: Large deviations for the empirical distribution in the branching random walk. Electron. J. Probab. 18, 1–19 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Louidor, O., Tsairi, E.: Large deviations for the empirical distribution in the general branching random walk (2017). arXiv:1704.02374

  15. Nagaev, S.V.: Large deviations of sums of independent random variables. Ann. Probab. 7, 745–789 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, Z.: Branching random walks. In: École d’Été de Probabilités de Saint-Flour XLII-2012, Lecture Notes in Mathematics, vol. 2151. Springer, Berlin (2015)

  17. Zeitouni, O.: Branching random walks and Gaussian fields. In: Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, vol. 91, pp. 437–471. American Mathematical Society, Providence, RI (2016)

Download references

Acknowledgements

We are grateful to Prof. Zhan Shi for help with Lemma 3.3. We also would like to thank the referee for carefully reading our paper, spotting several inaccuracies and for making valuable suggestions to improve the presentation. Hui He is supported by NSFC (Nos. 11671041, 11531001, 11371061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Chen.

Appendices

Appendix A

Lemma A.1

$$\begin{aligned} \inf _{a>0}\frac{\gamma (a)-\log p_1}{a}=\Lambda ^{-1} \left( \log \frac{1}{p_1}\right) \in (0,\infty ). \end{aligned}$$
(A.1)

Proof

Let \(x_0:=\sup \{x\in {\mathbb {R}}: F(x)<1\}\) and \(\theta _0:=\sup \{t\in {\mathbb {R}}_+: \Lambda (t)<\infty \}\). According to Sect. 2.6 of [6], there are three cases:

  1. (A)

    if \(x_0<\infty \), then \(\gamma (a)\uparrow -\log {\mathbb {P}}(X=x_0)\) as \(a\uparrow x_0\);

  2. (B)

    if \(x_0=\infty \) and \(\Lambda '(t)\uparrow \infty \) as \(t\uparrow \theta _0\), then for any \(a>0\) there exists \(t\in D_\lambda ^o\) such that \(\gamma (a)=t\Lambda '(t)-\Lambda (t)\);

  3. (C)

    if \(x_0=\infty \), \(\theta _0<\infty \) and \(\Lambda '(t)\uparrow a_0<\infty \) as \(t\uparrow \theta _0\), then \(\Lambda (\theta _0)<\infty \) and \(\gamma (a)=a\theta _0-\Lambda (\theta _0)\) for \(a\ge a_0\).

Recall (2.8). Let \(\Lambda _{\infty }'=\sup _{t\in \mathcal{D}_{\Lambda }^o}\Lambda '(t)\). In all cases above, we have

$$\begin{aligned} \inf _{a>0}\frac{\gamma (a)-\log p_1}{a}=\inf _{a<\Lambda _{\infty }'} \frac{\gamma (a)-\log p_1}{a}=\inf _{t\in \mathcal{D}_{\Lambda }^o}\frac{\log \frac{1}{p_1}+t\Lambda '(t)-\Lambda (t) }{\Lambda '(t)}. \end{aligned}$$

A simple calculation shows that the above infimum is taken when \(\Lambda (t)=-\log p_1.\) Then (A.1) follows readily. \(\square \)

Lemma A.2

For any \(\alpha >0\), let \(\{L_k: k\ge 0\}\) be a sequence such that \(0<L_0< {\bar{\Lambda }}(p_1)\) and

$$\begin{aligned} L_{k+1}=F(L_k)=\alpha \inf _{u\in {\mathbb {R}}}(-\log p_1+\gamma (u)-uL_k)+L_k, \,k\ge 0. \end{aligned}$$

If \(0<\alpha \Lambda '({\bar{\Lambda }}(p_1))\le 1\), then the sequence \((L_k)_{k\ge 0}\) is non-decreasing and

$$\begin{aligned} \lim _{k\rightarrow \infty }L_k={\bar{\Lambda }}(p_1)=\inf _{a>0}\frac{\gamma (a)-\log p_1}{a}. \end{aligned}$$

Proof

Notice that

$$\begin{aligned} \inf _{u\in {{\mathbb {R}}}}(\gamma (u)-ux)=\inf _{t\in \mathcal{D}_{\Lambda }^o }(t\Lambda '(t)-\Lambda (t)-\Lambda '(t)x )=-\Lambda (x),\quad x\in {{\mathcal {D}}}_{\Lambda }. \end{aligned}$$

Thus if \(0<L_0\le {\bar{\Lambda }}(p_1)=:\theta \), then using the facts that \(\log \frac{1}{p_1}=\Lambda (\theta )\) yields

$$\begin{aligned} \inf _{u\in {\mathbb {R}}}(-\log p_1+\gamma (u)-uL_0)&=\inf _{u>0}(-\log p_1+\gamma (u)-uL_0) \\&=\Lambda (\theta )-\Lambda (L_0)\ge 0, \end{aligned}$$

which implies \(L_1\ge L_0\). Furthermore, since \(0<\alpha \Lambda '({\bar{\Lambda }}(p_1))<1\), then by convexity of \(\Lambda \),

$$\begin{aligned} L_{1}=\alpha (\Lambda (\theta )-\Lambda (L_0))+L_0\le \alpha \Lambda '(\theta )(\theta -L_0)+L_0\le \theta . \end{aligned}$$

Therefore, \(\theta \ge L_1\ge L_0\). Inductively, we have \(\theta \ge L_{k+1}\ge L_k>0\). So the sequence \((L_k)_{k\ge 1}\) is non-decreasing and hence its limit exists with \(L:=\lim _{k\rightarrow \infty }L_k\le \theta \). On the other hand, as \(L_0\le L_k\le \theta \),

$$\begin{aligned} L_{k+1}-L_k=\alpha (\Lambda (\theta )-\Lambda (L_k))\ge \alpha \Lambda '(L_k)(\theta -L_k)\ge \alpha \Lambda '(L_0)(\theta -L_k)\ge 0. \end{aligned}$$

This shows that \(\theta -L_k\rightarrow 0\) as \(k\rightarrow \infty \). \(\square \)

Appendix B

The following lemma concerns large deviation probabilities of sums of i.i.d. random variables. The results are possibly well-known to some experts or implicitly contained in some articles.

Lemma B.1

Suppose that \(\{X_i\}_{i\ge 1}\) is a sequence of i.i.d. random variables, having the same distribution as X.

  1. (1)

    If \({\mathbb {P}}(X\ge x)=\Theta (1) e^{-\lambda x^{\alpha }}\) as \(x\rightarrow \infty \) with some \(\lambda >0\) and \(\alpha >1\), then for \(a>0\), and for a sequence of integers \((t_n)\) such that \(t_n=o(n^{\frac{1}{3}})\) and \(t_n\rightarrow \infty \), we have

    $$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{t_n^{\alpha -1}}{n^{\alpha /2}}\log {\mathbb {P}}\left( \sum _{i=1}^{t_n}X_i \ge a\sqrt{n}\right) \le - \lambda a^\alpha . \end{aligned}$$
  2. (2)

    If \({\mathbb {P}}(X\ge x)=\Theta (1) e^{-e^{x^{\alpha }}}\) as \(x\rightarrow \infty \) with some \(\alpha >0\), then for any \(a>0\) and any sequence \(t_n\uparrow \infty \) such that \(t_n=o\left( \frac{\sqrt{n}}{(\log n)^{2/\alpha +1}}\right) \),

    $$\begin{aligned} \liminf _{n\rightarrow \infty }\frac{t_n^{\alpha }}{n^{{\alpha }/{2}}}\log \left[ -\log {\mathbb {P}}\left( \sum _{i=1}^{t_n}X_i \ge a\sqrt{n}\right) \right] \ge a^{\alpha }. \end{aligned}$$

Proof

Notice that \({\mathbb {P}}\left( \sum _{i=1}^{t_n}X_i \ge a\sqrt{n}\right) \le {\mathbb {P}}\left( \sum _{i=1}^{t_n}X_i^+ \ge a\sqrt{n}\right) \), where \(X_i^+=X_i\vee 0.\) Thus it suffices to prove the desired results when X is non-negative. In the sequel of this proof, we always assume \(X\ge 0 \) a.s. Observe that

$$\begin{aligned} {\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i}\ge a\sqrt{n}\right)\le & {} {\mathbb {P}}\left( \sup _{1\le i\le t_n}{X_i}\ge n\right) \nonumber \\&+\,{\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}, \sup _{1\le i\le t_n}{X_i}< n\right) . \end{aligned}$$
(B.1)

Proof of (1): Note that there exists \(c_{16}>0\) such that for any \(x\ge 0\),

$$\begin{aligned} {\mathbb {P}}({X}\ge x)\le c_{16} e^{-\lambda x^{\alpha }}. \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathbb {P}}\left( \sup _{1\le i\le t_n}{X_i}\ge n\right) \le t_n {\mathbb {P}}({X}\ge n)\le c_{16} t_n e^{-\lambda n^{\alpha }}. \end{aligned}$$
(B.2)

Meanwhile,

$$\begin{aligned}&{\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}, \sup _{1\le i\le t_n}{X_i}< n\right) \nonumber \\&\quad = \sum _{x_i\in [0,n)\cap {{\mathbb {N}}}, i=1,\ldots , t_n}{\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}, \sup _{1\le i\le t_n}{X_i}< n, {X_i}\in [x_i, x_i+1)\right) \nonumber \\&\quad \le \sum _{\begin{array}{c} \sum _{i=1}^{t_n}x_i\ge a\sqrt{n}-t_n; \\ x_i\in [0,n)\cap {{\mathbb {N}}}, i=1,\ldots , t_n \end{array}} {\mathbb {P}}\left( {X_i}\in [x_i, x_i+1],\, \forall 1\le i\le t_n\right) \nonumber \\&\quad \le \sum _{\begin{array}{c} \sum _{i=1}^{t_n}x_i\ge a\sqrt{n}-t_n; \\ x_i\in [0,n)\cap {{\mathbb {N}}}, i=1,\ldots , t_n \end{array}} c_{16}^{t_n}\exp \left\{ -\lambda \sum _{i=1}^{t_n}x_i^{\alpha }\right\} \nonumber \\&\quad \le \sum _{\begin{array}{c} \sum _{i=1}^{t_n}x_i\ge a\sqrt{n}-t_n; \\ x_i\in [0,n)\cap {{\mathbb {N}}}, i=1,\ldots , t_n \end{array}} c_{16}^{t_n}\exp \left\{ -\lambda \frac{(a\sqrt{n}-t_n)^{\alpha }}{t_n^{\alpha -1}}\right\} \nonumber \\&\quad \le (nc_{16})^{t_n}\exp \left\{ -\lambda \frac{(a\sqrt{n}-t_n)^{\alpha }}{t_n^{\alpha -1}}\right\} , \end{aligned}$$
(B.3)

where in the third inequality we use the fact that the convexity of mapping \(x\mapsto x^\alpha \) for \(\alpha >1\) implies

$$\begin{aligned} \sum _{i=1}^{t_n}x_i^{\alpha }\ge t_n \left( \frac{\sum _{i=1}^{t_n}x_i}{t_n}\right) ^\alpha \ge \frac{(a\sqrt{n}-t_n)^{\alpha }}{t_n^{\alpha -1}}. \end{aligned}$$

Plugging (B.2) and (B.3) into (B.1), we obtain that

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{t_n^{\alpha -1}}{n^{\alpha /2}}\log {\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}\right) \le - \lambda a^\alpha , \end{aligned}$$

which suffices to conclude (1) of Lemma B.1.

Proof of (2): Similarly, for any \(\varepsilon >0\) there exists some constant \(c_{17}\ge 1\) such that

$$\begin{aligned} {\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}\right)\le & {} c_{17} t_n e^{-e^{n^\alpha }}+{\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}, \sup _{1\le i\le t_n}{X_i}< n\right) \nonumber \\\le & {} c_{17}t_n e^{-e^{n^\alpha }}+ (c_{17}n)^{t_n} \exp \left\{ - e^{\left( \frac{a\sqrt{n}}{t_n}\right) ^\alpha (1-\varepsilon )}\right\} , \end{aligned}$$
(B.4)

where we use the fact

$$\begin{aligned} \sum _{i=1}^{t_n}e^{x_i^\alpha }\ge \exp \left\{ \max _{1\le i\le t_n}x_i^\alpha \right\} \ge \exp \left\{ {\left( \frac{\sum _{i=1}^{t_n}x_i}{t_n}\right) ^\alpha }\right\} . \end{aligned}$$

Consequently,

$$\begin{aligned} \liminf _{n\rightarrow \infty }\frac{t_n^\alpha }{n^{\alpha /2}}\log \left[ -\log {\mathbb {P}}\left( \sum _{i=1}^{t_n}{X_i} \ge a\sqrt{n}\right) \right] \ge a^\alpha . \end{aligned}$$

We have completed the proof. \(\square \)

Appendix C

We shall show how the arguments in Sect. 2.3 in [13] can be extended to our settings in Theorems 1.5 and 1.6.

Proof of Theorem 1.5

Lower bound. Since \(\text {ess sup }X=L\), then for any \(0<\eta <L/2\),

$$\begin{aligned} q_{\eta }:={\mathbb {P}}\left( X\in (L-\eta , L]\right) ={\mathbb {P}}\left( X\in [-L, -L+\eta )\right) >0. \end{aligned}$$

According to the property of \(I_A(p)\), for any \(\varepsilon >\frac{2\eta }{L}\), there exists \(x\in {{\mathbb {R}}}\), \(\delta >0\) such that for all \(y\in \text {sgn}(x)\left( x\sqrt{n}, x\sqrt{n}+\frac{2\eta x\sqrt{n}}{L}\right] =:B\),

$$\begin{aligned} \nu \left( A-\frac{y}{\sqrt{n}}\right) \ge p+\delta ,\quad \frac{|y|}{\sqrt{n}}<I_A(p)+\varepsilon . \end{aligned}$$

Set

$$\begin{aligned} w=\lceil |x|\sqrt{n}/(L-\eta )\rceil ;\quad m=n-|w| \end{aligned}$$

and

$$\begin{aligned} {{\mathcal {M}}}_{\eta }=\left\{ \zeta \in {{\mathcal {M}}}: |\zeta |=b^{w}~\hbox {and supp}~\zeta \subset B\right\} . \end{aligned}$$

By the Markov property,

$$\begin{aligned} {\mathbb {P}}({\bar{Z}}_n(\sqrt{n}A)\ge p)\ge \sum _{\zeta \in \mathcal{M}_{\eta }}{\mathbb {P}}(Z_{w}=\zeta ){\mathbb {P}}({\bar{Z}}_m^{\zeta }(\sqrt{n}A)\ge p). \end{aligned}$$
(C.1)

Note that

$$\begin{aligned} {\mathbb {P}}(Z_{w}\in {{\mathcal {M}}}_{\eta })\ge q_{\eta }^{\frac{b^{w+1}-b}{b-1}}p_b^{\frac{b^{w}-1}{b-1}}=e^{-c_{18}b^w}. \end{aligned}$$
(C.2)

Meanwhile, for any \(\zeta \in {{\mathcal {M}}}_{\eta }\), as \({\bar{Z}}_m^{\zeta }(\sqrt{n}A)\ge \min _{y\in \zeta }{\bar{Z}}^{\delta _y}_m(\sqrt{n}A)\) because of (3.18),

$$\begin{aligned} {\mathbb {P}}({\bar{Z}}_m^{\zeta }(\sqrt{n}A)\ge p)\ge \prod _{y\in \zeta } {\mathbb {P}}({\bar{Z}}_m(\sqrt{n}A-y)\ge p). \end{aligned}$$
(C.3)

Then by exactly the same arguments for bounding (2.24) in [13], we have for any \(\zeta \in {{\mathcal {M}}}_{\eta }\),

$$\begin{aligned} {\mathbb {P}}\left( {\bar{Z}}_m^{\zeta }(\sqrt{n}A)\ge p\right) \ge e^{-c_{19}b^{w}}, \end{aligned}$$
(C.4)

which, together with (C.1) and (C.2), gives

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{1}{\sqrt{n}}\log \left[ -\log {\mathbb {P}}({\bar{Z}}_n(\sqrt{n}A)\ge p) \right] \ge \frac{I_A(p)\log b}{L-\eta }. \end{aligned}$$

Letting \(\eta \downarrow 0\) yields the lower bound.

Upper bound. For any \(\varepsilon >0\), set

$$\begin{aligned} |w|=\lfloor (I_A(p)-\varepsilon )\sqrt{n}/L\rfloor ;\quad m=n-|w|. \end{aligned}$$

Then we only need to copy the arguments from (2.29) to (2.34) in [13] to conclude that

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{1}{\sqrt{n}}\log \left[ -\log {\mathbb {P}}({\bar{Z}}_n(\sqrt{n}A)\ge p) \right] \le \frac{I_A(p)\log b}{L}. \end{aligned}$$

\(\square \)

Proof of Theorem 1.6

Lower bound We first notice that there exist \(L>L_0>0\) such that \({\mathbb {P}}(X\in (L_0, L))>\frac{1}{4}(1-{\mathbb {P}}(X=0))>0.\) Then for any n large enough, there exists \(z_n\in (L_0, L)\) such that

$$\begin{aligned} \ell _{z_n}:={\mathbb {P}}\left( X\in [z_n, z_n+\frac{1}{n})\right) \ge \frac{1}{n^2}. \end{aligned}$$

By property of \(J_A(p)\), we may find \(r\in (0,1),\, x\in {\mathbb R}\) and \(\delta >0\), such that for all \(y\in \text {sgn}(x)(|x|\sqrt{n}-L-2, |x|\sqrt{n}+L+2)=:B\),

$$\begin{aligned} r<J_A(p)+\varepsilon ,\quad \nu ((A-{y}/{\sqrt{n}})/\sqrt{1-r})\ge p+\delta . \end{aligned}$$

Set

$$\begin{aligned} q=2\lfloor rn/2\rfloor ;\quad w=\left\lfloor \frac{|x|\sqrt{n}}{z_n}\right\rfloor ;\quad s=q+w \end{aligned}$$

and

$$\begin{aligned} {{\mathcal {M}}}_n=\left\{ \zeta \in {{\mathcal {M}}}: |\zeta |=b^{s}\text { and }\text {supp}\zeta \subset B \right\} . \end{aligned}$$

By the Markov property,

$$\begin{aligned} {\mathbb {P}}({\bar{Z}}_n(\sqrt{n}A)\ge p)\ge \sum _{\zeta \in \mathcal{M}_{\eta }}{\mathbb {P}}(Z_{s}=\zeta ){\mathbb {P}}\left( {\bar{Z}}_{n-s}^{\zeta }(\sqrt{n}A)\ge p\right) . \end{aligned}$$
(C.5)

Notice that

$$\begin{aligned} {\mathbb {P}}(Z_{s}\in {{\mathcal {M}}}_n)\ge \ell _{z_n}^{\frac{b^{s+1}-b}{b-1}}p_b^{\frac{b^{s}-1}{b-1}}\ge e^{-c_{20}b^s\log n}, \end{aligned}$$
(C.6)

by having all particles give birth to b children in the first s generations, move with step size only in \([z_n, z_n+\frac{1}{n})\) or only in \((-z_n, -\frac{1}{n}-z_n]\) in the first w generations (depending on the sign of x), and then alternate between \([z_n, z_n+\frac{1}{n})\) and \((-z_n-\frac{1}{n}, -z_n]\) steps in the succeeding q generations. So in the s-th generation, all the \(b^s\) particles are located in B if \(\frac{w}{n}<1.\) Again,like (C.3), for any \(\zeta \in {{\mathcal {M}}}_{n}\),

$$\begin{aligned} {\mathbb {P}}\left( {\bar{Z}}_{n-s}^{\zeta }(\sqrt{n}A)\ge p\right) \ge \prod _{y\in \zeta } {\mathbb {P}}({\bar{Z}}_{n-s}(\sqrt{n}A-y)\ge p). \end{aligned}$$

Then by exactly the same arguments for bounding (2.38) in [13], we have for any \(\zeta \in {{\mathcal {M}}}_{\eta }\),

$$\begin{aligned} {\mathbb {P}}\left( {\bar{Z}}_m^{\zeta }(\sqrt{n}A)\ge p\right) \ge e^{-c_{21}b^{s}}, \end{aligned}$$
(C.7)

which, together with (C.5) and (C.6), implies the lower bound.

Upper bound The proof for upper bound is also exactly the same as the one in [13]; see pages 12–13 there. We omit it here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., He, H. On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements. Probab. Theory Relat. Fields 175, 255–307 (2019). https://doi.org/10.1007/s00440-018-0891-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0891-4

Keywords

Mathematics Subject Classification

Navigation